Identificación y análisis de los patrones temporales y espaciales de los incendios forestales causados por rayos en la región de Murcia (sureste de España): periodo 2000-2020

Autores

DOI:

https://doi.org/10.14195/1647-7723_32-extra1_13

Palavras-chave:

Riesgo natural, análisis de tendencias, varabilidad, probabilidad, modelo predictivo

Resumo

Se presenta un estudio en el que se han analizado diferentes elementos que han permitido la consecución de toda una secuencia de patrones temporales y espaciales asociados a los incendios forestales originados por rayos en la Región de Murcia, a lo largo del periodo 2000-2020. El resultado ha sido la obtención de una relación entre los incendios inducidos por rayos con una serie de patrones temporales desde el punto de vista de tendencia dentro del periodo, interanual, mensual, por quincenas y horaria, además de la consecución de toda una serie de patrones espaciales desde el punto de vista de su localización geográfica, altitud, pendiente, orientación, modelo de combustible, comunidades vegetales, humedad del material vegetal fino, condiciones meteorológicas, piso bioclimático, edafología, litología e intensidad eléctrica (Kiloamperios) de los rayos. En la investigación se han analizado los datos proporcionados por la UDIF (Unidad de Defensa contra Incendios Forestales de la Región de Murcia), obtenidos de los informes realizados por los agentes medioambientales que recogieron la información. Se concluye que la distribución de los incendios forestales originados por rayos no es aleatoria, y el riesgo de simultaneidad de incendios al que dan lugar las descargas eléctricas provocadas por tormentas hacen que este fenómeno de origen natural deba tenerse muy en cuenta por parte de las administraciones y gestores ambientales.

Downloads

Não há dados estatísticos.

Referências

Anderson, H. E. (1982). Aids to determining fuel models for estimating fire behavior [Grass, shrub, timber, and slash, photographic examples, danger ratings]. USDA Forest Service general technical report INT-Intermountain Forest and Range Experiment Station (USA).

Beverly, J. L., & Wotton, B. M. (2007). Modelling the probability of sustained flaming: predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire, 16(2), 161-173.

Blackmarr, W. H. (1972). Moisture content influences ignitability of slash pine litter. Res. Note SE-173. Asheville, NC: US Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 7.

Broncano, M. J., & Retana, J. (2004). Topography and forest composition affecting the variability in fire severity and post-fire regeneration occurring after a large fire in the Mediterranean basin. International Journal of Wildland Fire, 13(2), 209-216.

Calderón Cortés, D., (2021). Desmontando el rayo en Incendios Forestales. Revista Incendios y Riesgos Naturales. Diciembre 2021/Núm. 5.

Conedera, M., Cesti, G., Pezzatti, G. B., Zumbrunnen, T., & Spinedi, F. (2006). Lightning-induced fires in the Alpine region: An increasing problem. Forest Ecology and Management, 234(1), S68.

Conesa García, C. (Ed.). (2007). El medio físico de la Región de Murcia. Murcia: Editum.

Cooray, V., (2003). The Lightning Flash. The Institution of Electrical Engineers, 574 pp. London.

Curt, T., Ganteaume, A., Alleaume, S., Borgniet, L., Chandioux, O., Jappiot, M., & Martin, W. (2007, May). Vegetation flammability and ignition potential at road-forest interfaces (southern France). In Proceedings of the 4th International Wildland Fire Conference (pp. 14-18).

Díaz-Avalos, C., Peterson, D. L., Alvarado, E., Ferguson, S. A., & Besag, J. E. (2001). Space time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research, 31(9), 1579-1593.

Dissing, D., and D. L. Verbyla, (2003). Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res., 33, 770–782.

Ellis, P. F. (2000). The aerodynamic and combustion characteristics of eucalypt bark: a firebrand study.

Ferreira, M. C., & Ferreira, G. S. (1987). Impacte de fogo nos escolitídeos associados com Pinheiro Bravo. Floresta, 4, 12-14.

Flannigan, M. D., & Wotton, B. M. (1991). Lightning-ignited Forest fires in northwestern Ontario. Canadian Journal of Forest Research, 21(3), 277-287.

Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. y Stocks, B. J. (2005): Future Area Burned in Canada. Climatic Change, 72, 1, 1-16.

Frandsen, W. H. (1987). The influence of moisture and mineral soil on the combustion limits of smoldering forest duff. Canadian Journal of Forest Research, 17(12), 1540-1544.

Frandsen, W. H. (1997). Ignition probability of organic soils. Canadian Journal of Forest Research, 27(9), 1471-1477.

Fuquay, D. M., Baughman, R. G., Taylor, A. R., & Hawe, R. G. (1967). Characteristics of seven lightning discharges that caused forest fires. Journal of Geophysical Research, 72(24), 6371-6373.

Fuquay, D. M., Taylor, A. R., Hawe, R. G., & Schmid Jr, C. W. (1972). Lightning discharges that caused forest fires. Journal of Geophysical Research, 77(12), 2156-2158.

García Marín, R., & Conesa, C. (2006). Secuencias pluviométricas secas de larga duración en la cuenca del Guadalentín (Murcia-Almería). En: J. M. Cuadrat Prats, M. A. Saz Sánchez, S. M. Vicente Serrano, S. Lanjeri, M. de Luis Arrillaga y J. C. González-Hidalgo (Eds.). Clima, sociedad y medio ambiente. Zaragoza: Asociación Española de Climatología, 1-12. URL: https://repositorio.aemet.es/handle/20.500.11765/8844

García Marín, R., & García-Tornel, F. C. (2008). Frecuencia y evolución de rachas secas en la cuenca del Guadalentín (Sureste de España). Boletín de la Asociación de Geógrafos Españoles, Vol. 48, 71-89.

George, P. (2003). Diccionario Akal de geografía (Vol. 5). Ediciones Akal.

González-Ochoa, A. I., de Las Heras, J., Torres, P., & Sánchez-Gómez, E. (2003). Mycorrhization of Pinus halepensis Mill. and Pinus pinaster Aiton seedlings in two commercial nurseries. Annals of forest science, 60(1), 43-48.

Guijarro, M., Hernando, C., Díez, C., Martínez, E., Madrigal, J., Lampin-Cabaret, C., & Fonturbel, M. T. (2002, November). Flammability of some fuel beds common in the South-European ecosystems. In IV International Conference Forest Fire Research.

Hartford, R. A. (1993). Smoldering combustion limits in peat as influenced by moisture mineral content and organic bulk density. Graduate Student Theses, Dissertations, & Professional Papers. 7385. University of Montana. https://scholarworks.umt.edu/etd/7385

Jappiot, M., Curt, T., Lampin, C., Borgniet, L., Vinet, O., Louis, S., & Estève, R. (2007, May). Characteristics and flammability of French Mediterranean dead litter fuels. In Poster at the International Wildland Fire Conference, Seville, Spain, 13-17.

Johnson, E. A. (1992): Fire and vegetation dynamics: studies from the North American boreal forest. Cambridge, United Kingdom. Cambridge University Press.

Komarek, E. V. (1967, November). The nature of lightning fires. In Tall Timbers Fire Ecology Conference, vol. 7, 5-41.

Latham, D., & Williams, E. (2001). Lightning and forest fires. In Forest Fires (pp. 375-418). Academic press.

Lawson, B. D., Frandsen, W. H., Hawkes, B. C., & Dalrymple, G. N. (1997). Probability of sustained smoldering ignition for some boreal forest duff types. Edmonton, Alberta, Can For Serv. For Manage. Note 63, 11.

Lericos, T. P., H. E. Fuelberg, A. I. Watson, and R. L. Holle, (2002). Warm season lightning distributions over the Florida peninsula as related to synoptic patterns. Wea. Forecasting, 17, 83–99.

Lin, C. C. (1999). Modeling probability of ignition in Taiwan red pine forests. 臺灣林業科學, 14(3), 339-344.

López, R. E., and R. L. Holle, (1986). Diurnal and spatial variability of lightning activity in northeastern Colorado and Central Florida during the summer. Mon. Wea. Rev., 114, 1288–1312.

Lozano, F. J., Suárez-Seoane, S., Kelly, M., & Luis, E. (2008). A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sensing of Environment, 112(3), 708-719.

Manzello, S. L., Cleary, T. G., Shields, J. R., & Yang, J. C. (2006). On the ignition of fuel beds by firebrands. Fire and Materials: An International Journal, 30(1), 77-87.

Marino, E., Madrigal, J., Guijarro, M., Hernando, C., Díez, C., & Fernández, C. (2010). Flammability descriptors of fine dead fuels resulting from two mechanical treatments in shrubland: a comparative laboratory study. International Journal of Wildland Fire, 19(3), 314-324.

McAlpine, R. S., & Wakimoto, R. H. (1991). The acceleration of fire from point source to equilibrium spread. Forest Science, 37(5), 1314-1337.

Mesón, M., & Montoya, M. (1993). Selvicultura mediterránea. Madrid: Mundiprensa.

Minnich, R. A., & Bahre, C. J. (1995). Wildland fire and chaparral succession along the California Baja-California boundary. International Journal of Wildland Fire, 5(1), 13-24.

Miyanishi, K., & Johnson, E. A. (2002). Process and patterns of duff consumption in the mixed wood boreal forest. Canadian Journal of Forest Research, 32(7), 1285-1295.

Nash, C. H., & Johnson, E. A. (1996). Synoptic climatology of lightning-caused forest fires in subalpine and boreal forests. Canadian Journal of Forest Research, 26(10), 1859-1874.

Nieto, H., Aguado, I., Chuvieco, E., (2006). Estimation of lightning-caused fires occurrence probability in central Spain. Proc 5th International conference on forest fire research. Coimbra, Portugal, Nov 27-30, 15 p.

Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L. Cummins (2002). The North American Lightning Detection Network (NALDN)—First results: 1998–2000. Mon. Wea. Rev., 130, 2098–2109.

Otway, S. G., Bork, E. W., Anderson, K. R., & Alexander, M. E. (2007). Predicting sustained smouldering combustion in trembling aspen duff in Elk Island National Park, Canada. International Journal of Wildland Fire, 16(6), 690-701.

Pacheco, C. E., Aguado, I., Nieto, H., (2009). Análisis de ocurrencia de incendios forestales causados por rayo en la España peninsular. Geofocus 9, 232-249.

Pausas, J. G. (2020). Incendios forestales. Los libros de la Catarata.

Pérez-Gorostiaga, P., Vega J.A., Fonturbel, M. T., Guijarro, M., Hernando, C., Díez, C., Martínez, E., Lampin, C., Blanc, L., Colin, P. Y., (2002). Capability of ignition of some forest firebrands. In “Proceedings of the 4th International Conference on Forest Fire Research & Wildland Fire Safety”, November 2002, Luso-Coimbra, Portugal.

Pineda Rüegg, N., Montañá Puig, J., & Van der Velde, O. A. (2012). Characteristics of lightning related to wildfire ignitions in Catalonia. Atmospheric research, 135, 380-387.

Plucinski, M. P. (2003). The investigation of factors governing ignition and development of fires in heathland vegetation (PhD thesis). University of New South Wales.

Plucinski, M. P., & Anderson, W. R. (2008). Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire, 17(5), 628-637.

Podur, J., Martell, D. L., & Csillag, F. (2003). Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecological modelling, 164(1), 1-20.

Price, C., & Rind, D. (1994a). The impact of a 2× CO 2 climate on lightning-caused fires. Journal of Climate, 7 (10), 1484-1494.

Price, C., & Rind, D. (1994b). Modeling global lightning distributions in a general circulation model. Monthly Weather Review, 122 (8), 1930-1939.

Prieto Sisniega, D. (2014). Análisis de las descargas eléctricas en el principado de Asturias. Trabajo Fin de Máster. Universidad de Oviedo, 54 p.

Pyne, S. J. (2011). Fire: a brief history. University of Washington Press.

Rambal, S., & Hoff, C. (1998). Mediterranean ecosystems and fire: the threats of global change. In ‘Large Forest Fires’. (Ed. JM Moreno) pp. 187–213.

Reardon, J., Hungerford, R., & Ryan, K. (2007). Factors affecting sustained smouldering in organic soils from pocosin and pond pine woodland wetlands. International Journal of Wildland Fire, 16(1), 107-118.

Rothermel, R. C. (1983). How to predict the spread and intensity of forest and range fires (Vol. 143). US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Rothermel, R. C. (1991). Predicting behavior and size of crown fires in the Northern Rocky Mountains (Vol. 438). US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station.

Sánchez-Toribio, M. I., García-Marín, R., Conesa-García, C., & López-Bermúdez, F. (2010). Evaporative demand and water requirements of the principal crops of the Guadalentín valley (SE Spain) in drought periods. Spanish Journal of Agricultural Research, 8, 66-75.

Satoh, K., Yang, L. Z., & Yang, K. T. (2003). TED-aj03-551. Study of forest fire initiation due to lighted cigarette: measurement and observation of flaming probability of dried leaves. In Proceedings of the ASME/JSME Thermal Engineering Joint Conference (Vol. 2003, No. 6, p. 346). 日本機械学会.

Sturman, A. P., & Tapper, N. J. (1996). The weather and climate of Australia and New Zealand. Oxford University Press. USA.

Tanskanen, H., Granström, A., Venäläinen, A., & Puttonen, P. (2006). Moisture dynamics of moss-dominated surface fuel in relation to the structure of Picea abies and Pinus sylvestris stands. Forest Ecology and Management, 226(1-3), 189-198.

Uman, M. A. (1987). The lightning discharge. Academic, San Diego, California.

Van Wagner, C. E. (1987). Development and structure of the Canadian forest fire weather index system (Vol. 35), Forestry Technical Report - Canadian Forestry Service.

Vankat, J. L. (1985). General patterns of lightning ignitions in Sequoia National Park, California. In JE Lotan, BM Kilgore, WC Fischer, and RW Mutch, technical coordinators.

Proceedings of the symposium and workshop on wilderness fire. USDA General Technical Report INT-182, Ogden, Utah, USA, 408-411.

Vázquez, A., & Moreno, J. M. (1998). Patterns of lightning-, and people-caused fires in peninsular Spain. International Journal of Wildland Fire, 8(2), 103-115.

Vélez, R. (2009). Los índices meteorológicos de peligro. En: La defensa contra incendios forestales. Fundamentos y experiencias. Segunda Edición. McGraw-Hill / Interamericana de España, S. A. U. 151-161.

Viegas, D. X., Bovio, G., Ferreira, A., Nosenzo, A., & Sol, B. (1999). Comparative study of various methods of fire danger evaluation in southern Europe. International Journal of wildland fire, 9(4), 235-246.

##submission.downloads##

Publicado

2025-12-17