Plataforma INTREPID: novas tecnologias ao serviço da segurança dos socorristas em operações de busca e salvamento
DOI:
https://doi.org/10.14195/1647-7723_32-2_9Palavras-chave:
Vítima,, resgate,, socorristas, , tecnologia,, plataforma.Resumo
Os cenários que se seguem a uma catástrofe natural ou provocada pelo homem são sempre caóticos, mutáveis e, acima de tudo, perigosos para os socorristas, que têm de lidar com áreas complexas e hostis, enquanto localizam e resgatam vítimas. Tomar decisões urgentes no terreno, sem ter informações fiáveis sobre a segurança da área de trabalho, dificulta uma resposta rápida e eficaz. O projeto INTREPID faz parte do programa de investigação e inovação HORIZON 2020 financiado pela União Europeia (UE) e tem como principal objetivo do INTREPID desenvolver uma plataforma única que integre diferentes soluções modulares para facilitar a comunicação, exploração e avaliação de substâncias perigosas e locais potencialmente habitados, utilizando tecnologias como realidade estendida, aplicações de posicionamento, amplificações de rede em locais de difícil acesso e assistentes cibernéticos inteligentes, entre outras. Estas ferramentas realistas foram testadas e melhoradas ao longo do projeto durante simulações controladas em diferentes cenários, como uma inundação de um metro, um incidente químico industrial e uma explosão num hospital. Os dados recolhidos nestas simulações serviram para otimizar esta tecnologia focada em atender às necessidades específicas de diferentes grupos de usuários finais.
Downloads
Referências
Adapted situation awareness tools and tailored training scenarios for increasing capabilities and enhancing the protection of first responders (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/832576
Aljehani, M., Inoue, M., Watanbe, A., Yokemura, T., Ogyu, F., & Iida, H. (2020). UAV communication system integrated into network traversal with mobility. SN Applied Sciences, 2(6), 1057. DOI: https://doi.org/10.1007/s42452-020-2749-5
Atif, M., Ahmad, R., Ahmad, W., Zhao, L., & Rodrigues, J. J. P. C. (2021). UAV-Assisted Wireless Localization for Search and Rescue. IEEE Systems Journal, 15(3), 3261-3272.
DOI: https://doi.org/10.1109/JSYST.2020.3041573
Bhatt, K., Pourmand, A., & Sikka, N. (2018). Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemedicine Journal and E-Health: The Official Journal of the American Telemedicine Association, 24(11), 833-838. DOI: https://doi.org/10.1089/tmj.2017.0289
Bhattacharya, S., Hossain, M. M., Hoedebecke, K., Bacorro, M., Gökdemir, Ö., & Singh, A. (2020). Leveraging Unmanned Aerial Vehicle Technology to Improve Public Health Practice: Prospects and Barriers. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 45(4), 396-398. DOI: https://doi.org/10.4103/ijcm.IJCM_402_19
Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F. G., & Lingua, A. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors (Basel, Switzerland), 15(7), 15717-15737. DOI: https://doi.org/10.3390/s150715717
Chan, T. C., Killeen, J., Griswold, W., & Lenert, L. (2004). Information technology and emergency medical care during disasters. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 11(11), 1229–1236. DOI: https://doi.org/10.1197/j.aem.2004.08.018
Coordinated Use of miniaturized Robotic equipment and advanced Sensors for search and rescue Operations. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/832790
Discover the INTREPID project, its missions, its stakeholders, its goals. (s. f.). INTREPID. Recuperado 30 de agosto de 2023, de https://intrepid-project.eu//
Drones Can Be Even More Effective for Search and Rescue (2023, agosto 25). GovTech. https://www.govtech.com/em/drones-can-be-even-more-effective-for-search-and-rescue
First responder advanced technologies for safe and efficient emergency response. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/833507
García García, R., & Arias-Montiel, M. (2016). Prototipo virtual de un robot móvil multi-terreno para aplicaciones de búsqueda y rescate, 337-351.
Hodapp, P. (2015, diciembre 15). Search and Rescue Teams Aim to Save Lives with Off-the-Shelf Drones. Make: DIY Projects and Ideas for Makers.
How drones help search and rescue missions in the desert. (s. f.). Recuperado 30 de agosto de 2023, de https://www.police1.com/police-products/police-drones/articles/saving-lives-in-the-desert-how-drones-made-mesa-fire-and-medical-departments-search-and-rescue-efforts-more-effective-rGRE9dZoxBfRZ4HT/
Intelligent Toolkit for Reconnaissance and assessmEnt in Perilous Incidents | INTREPID Project | Fact Sheet | H2020. (s. f.). CORDIS | European Commission. Recuperado 30 de agosto de 2023, de https://cordis.europa.eu/project/id/883345/es
Li, T., & Hu, H. (2021). Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Management and Healthcare Policy, 14, 4293-4299.
DOI: https://doi.org/10.2147/RMHP.S323727
Lim, J. C. L., Loh, N., Lam, H. H., Lee, J. W., Liu, N., Yeo, J. W., & Ho, A. F. W. (2022). The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review. Journal of Clinical Medicine, 11(19), 5744. DOI: https://doi.org/10.3390/jcm11195744
Lu, J., Ling, K., Zhong, W., He, H., Ruan, Z., & Han, W. (2023). Construction of a 5G-based, three-dimensional, and efficiently connected emergency medical management system. Heliyon, 9(3), e13826. DOI: https://doi.org/10.1016/j.heliyon.2023.e13826
Madanian, S., Norris, T., & Parry, D. (2020). Disaster eHealth: Scoping Review. Journal of Medical Internet Research, 22(10), e18310. DOI: https://doi.org/10.2196/18310
Medina Díaz, P., Cintora Sanz, A.M., González Rico, P., Domínguez Pérez, M.L., Blanco Hermo, P. y Gómez de la Oliva, S. 2022. Proyecto INTREPID: La tecnología del futuro, ahora. Paraninfo Digital. 34 (oct. 2022), e34069d.
Norris, A., Martinez, S., Labaka, L., Madanian, S., Gonzalez, J., & Parry, D. (2015). Disaster E-Health: A New Paradigm for Collaborative Healthcare in Disasters. DOI: https://doi.org/10.13140/RG.2.1.3428.6248
Oliver, F. (s. f.). Six ways drones are helping in emergency response. Recuperado 30 de agosto de 2023, de https://www.scaleflyt.com/news/six-ways-drones-are-helping-in-emergency-response
Orbea, D., Cruz Ulloa, C., Del Cerro, J., & Barrientos, A. (2023). RUDE-AL: Roped UGV Deployment Algorithm of an MCDPR for Sinkhole Exploration. Sensors (Basel, Switzerland), 23(14), 6487. DOI: https://doi.org/10.3390/s23146487
Ortiz, J. S., Zapata, C. F., Vega, A. D., Santana G., A., & Andaluz, V. H. (2018). Heterogeneous Cooperation for Autonomous Navigation Between Terrestrial and Aerial Robots.
En K. J. Kim, H. Kim, & N. Baek (Eds.), IT Convergence and Security 2017 (287-296). Springer. DOI: https://doi.org/10.1007/978-981-10-6451-7_34
Petlon, J. G. (2023). Improving Communication between the Emergency Department and Prehospital Emergency Medical Services Through the Use of a Secure Messaging Application: A Quality Improvement Project (Master’s thesis). Retrieved from https://scholars.unh.edu/thesis/1685
Pervez, F., Qadir, J., Khalil, M., Yaqoob, T., Ashraf, U., & Younis, S. (2018). Wireless Technologies for Emergency Response: A Comprehensive Review and Some Guidelines. IEEE Access, 6, 71814-71838. DOI: https://doi.org/10.1109/ACCESS.2018.2878898
Półka, M., Ptak, S., & Kuziora, Ł. (2017). The Use of UAV’s for Search and Rescue Operations. Procedia Engineering, 192, 748-752. DOI: https://doi.org/10.1016/j.proeng.2017.06.129
Popescu, D., Vlasceanu, E., Dima, M., Stoican, F., & Ichim, L. (2020). Hybrid Sensor Network for Monitoring Environmental Parameters. 2020 28th Mediterranean Conference on Control and Automation (MED), 933-938. DOI: https://doi.org/10.1109/MED48518.2020.9183165
Robakowska, M., Ślęzak, D., Tyrańska-Fobke, A., Nowak, J., Robakowski, P., Żuratyński, P., Ładny, J., & Nadolny, K. (2019). Operational and Financial Considerations of Using Drones for Medical Support of Mass Events in Poland. Disaster Medicine and Public Health Preparedness, 13(3), 527-532. DOI: https://doi.org/10.1017/dmp.2018.106
Robakowska, M., Ślęzak, D., Żuratyński, P., Tyrańska-Fobke, A., Robakowski, P., Prędkiewicz, P., & Zorena, K. (2022). Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. International Journal of Environmental Research and Public Health, 19(17), 10754. DOI: https://doi.org/10.3390/ijerph191710754
Robot rescuers to help save lives after disasters | Research and Innovation. (s. f.). Recuperado 30 de agosto de 2023, de https://ec.europa.eu/research-and-innovation/en/horizon-magazine/robot-rescuers-help-save-lives-after-disasters
Sarcevic, A., Zhang, Z., & Kusunoki, D. S. (2012). Decision making tasks in time-critical medical settings. In Proceedings of the 17th ACM International Conference on Supporting Group Work, ACM, 99–102.
Shavarani, S. M. (2019). Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: A case study. Journal of Humanitarian Logistics and Supply Chain Management, 9(1), 70-81. DOI: https://doi.org/10.1108/JHLSCM-05-2018-0036
Sibley, A. K., Jain, T. N., Butler, M., Nicholson, B., Sibley, D., Smith, D., & Atkinson, P. (2019). Remote Scene Size-up Using an Unmanned Aerial Vehicle in a Simulated Mass Casualty Incident. Prehospital Emergency Care, 23(3), 332-339. DOI: https://doi.org/10.1080/10903127.2018.1511765
Song, Q., Gao, X., Song, Y., Li, Q., Chen, Z., Li, R., Zhang, H., & Cai, S. (2023). Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging. Scientific Reports, 13(1), 14097. DOI: https://doi.org/10.1038/s41598-023-40384-2
Sustainability | Free Full-Text | The Efficiency of Drones Usage for Safety and Rescue Operations in an Open Area: A Case from Poland. (s. f.). Recuperado 30 de agosto de 2023, de https://www.mdpi.com/2071-1050/14/1/327
The First Responder of the Future: a Next Generation Integrated Toolkit for Collaborative Response, increasing protection and augmenting operational capacity. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/833435
Thiels, C. A., Aho, J. M., Zietlow, S. P., & Jenkins, D. H. (2015). Use of unmanned aerial vehicles for medical product transport. Air Medical Journal, 34(2), 104-108. DOI: https://doi.org/10.1016/j.amj.2014.10.011
Wen, T., Zhang, Z., & Wong, K. K. L. (2016). Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation. PloS One, 11(5), e0155176. DOI: https://doi.org/10.1371/journal.pone.0155176
Xue, Y., & Sun, J.-Q. (2018). Solving the Path Planning Problem in Mobile Robotics with the Multi-Objective Evolutionary Algorithm. Applied Sciences, 8(9), 9. DOI: https://doi.org/10.3390/app8091425
Zacharie, M., Fuji, S., & Minori, S. (2018). Rapid Human Body Detection in Disaster Sites Using Image Processing from Unmanned Aerial Vehicle (UAV) Cameras. 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 3, 230-235. DOI: https://doi.org/10.1109/ICIIBMS.2018.8549955
Zhang, G., Shang, B., Chen, Y., & Moyes, H. (2017). SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists (p. 1057). DOI: https://doi.org/10.1109/ICUAS.2017.799149
Zhang, Z., Brazil, J., Ozkaynak, M., & Desanto, K. (2020). Evaluative Research of Technologies for Prehospital Communication and Coordination: a Systematic Review. Journal of medical systems, 44(5), 100. DOI: https://doi.org/10.1007/s10916-020-01556-z
Zhang, Z., Sarcevic, A., & Bossen, C. (2017). Constructing common information spaces across distributed emergency medical teams. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (934–947). Portland, Oregon: ACM.
Zhang, Z., Sarcevic, A., Joy, K., Ozkaynak, M., & Adelgais, K. (2022). User Needs and Challenges in Information Sharing between Pre-Hospital and Hospital Emergency Care Providers. AMIA Annual Symposium Proceedings, 2021, 1254-1263.
Zhu, Z., Xiao, J., Li, J.-Q., Wang, F., & Zhang, Q. (2015). Global path planning of wheeled robots using multi-objective memetic algorithms. Integrated Computer-Aided Engineering, 22(4), 387-404. DOI: https://doi.org/10.3233/ICA-150498
Zixuan Zhang, Q. W. (2018). UAV flight strategy algorithm based on dynamic programming. Journal of Systems Engineering and Electronics, 29(6), 1293-1299. DOI: https://doi.org/10.21629/JSEE.2018.06.16
##submission.downloads##
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Territorium

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
Os autores conservam os direitos de autor e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite a partilha do trabalho com reconhecimento da autoria e publicação inicial nesta revista.