INTREPID platform: new technologies at the service of the safety of the first responders in search and rescue operations

Authors

  • Andrés Cabañas Jiménez 1185213Q
  • Ana María Cintora Sanz SUMMA112
  • Patricia Ibáñez Sanz SUMMA112
  • Manuel José González León SUMMA112
  • Carmen Colmenar García SUMMA112
  • Natalia Cámara Conde SUMMA112
  • Mónica Caballero García SUMMA112
  • Tatiana Vázquez Rodríguez SUMMA112

DOI:

https://doi.org/10.14195/1647-7723_32-2_9

Keywords:

Victim,, rescue,, first responders,, technology,, platform.

Abstract

The scenarios that follow a natural or man-made disaster are always chaotic, changing, and, above all, dangerous for first responders, who must deal with complex and hostile areas while searching for and rescuing victims. Making urgent decisions on the ground, without having reliable information about the safety of the work area, makes it difficult to respond quickly and effectively. The INTREPID project is part of the HORIZON 2020 research and innovation programme funded by the European Union (EU). The main objective of INTREPID is to develop a single platform that integrates different modular solutions to facilitate the communication, exploration, and assessment of dangerous and potentially inhabited sites. For this, it uses technologies such as extended reality, positioning applications, network amplifications in hard-to-reach places, and intelligent cyber assistants among others. These realistic tools have been tested and improved throughout the project during controlled simulations in different scenarios such as a one-metre flood, an industrial chemical incident, and an explosion in a hospital. The data collected in these simulations has served to optimize this technology which is focused on meeting the specific needs of different groups of end users.

Downloads

Download data is not yet available.

References

Adapted situation awareness tools and tailored training scenarios for increasing capabilities and enhancing the protection of first responders (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/832576

Aljehani, M., Inoue, M., Watanbe, A., Yokemura, T., Ogyu, F., & Iida, H. (2020). UAV communication system integrated into network traversal with mobility. SN Applied Sciences, 2(6), 1057. DOI: https://doi.org/10.1007/s42452-020-2749-5

Atif, M., Ahmad, R., Ahmad, W., Zhao, L., & Rodrigues, J. J. P. C. (2021). UAV-Assisted Wireless Localization for Search and Rescue. IEEE Systems Journal, 15(3), 3261-3272.

DOI: https://doi.org/10.1109/JSYST.2020.3041573

Bhatt, K., Pourmand, A., & Sikka, N. (2018). Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemedicine Journal and E-Health: The Official Journal of the American Telemedicine Association, 24(11), 833-838. DOI: https://doi.org/10.1089/tmj.2017.0289

Bhattacharya, S., Hossain, M. M., Hoedebecke, K., Bacorro, M., Gökdemir, Ö., & Singh, A. (2020). Leveraging Unmanned Aerial Vehicle Technology to Improve Public Health Practice: Prospects and Barriers. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 45(4), 396-398. DOI: https://doi.org/10.4103/ijcm.IJCM_402_19

Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F. G., & Lingua, A. (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors (Basel, Switzerland), 15(7), 15717-15737. DOI: https://doi.org/10.3390/s150715717

Chan, T. C., Killeen, J., Griswold, W., & Lenert, L. (2004). Information technology and emergency medical care during disasters. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine, 11(11), 1229–1236. DOI: https://doi.org/10.1197/j.aem.2004.08.018

Coordinated Use of miniaturized Robotic equipment and advanced Sensors for search and rescue Operations. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/832790

Discover the INTREPID project, its missions, its stakeholders, its goals. (s. f.). INTREPID. Recuperado 30 de agosto de 2023, de https://intrepid-project.eu//

Drones Can Be Even More Effective for Search and Rescue (2023, agosto 25). GovTech. https://www.govtech.com/em/drones-can-be-even-more-effective-for-search-and-rescue

First responder advanced technologies for safe and efficient emergency response. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/833507

García García, R., & Arias-Montiel, M. (2016). Prototipo virtual de un robot móvil multi-terreno para aplicaciones de búsqueda y rescate, 337-351.

Hodapp, P. (2015, diciembre 15). Search and Rescue Teams Aim to Save Lives with Off-the-Shelf Drones. Make: DIY Projects and Ideas for Makers.

https://makezine.com/article/drones-vehicles/search-and-rescue-teams-aim-to-save-lives-off-the-shelf-drones/

How drones help search and rescue missions in the desert. (s. f.). Recuperado 30 de agosto de 2023, de https://www.police1.com/police-products/police-drones/articles/saving-lives-in-the-desert-how-drones-made-mesa-fire-and-medical-departments-search-and-rescue-efforts-more-effective-rGRE9dZoxBfRZ4HT/

Intelligent Toolkit for Reconnaissance and assessmEnt in Perilous Incidents | INTREPID Project | Fact Sheet | H2020. (s. f.). CORDIS | European Commission. Recuperado 30 de agosto de 2023, de https://cordis.europa.eu/project/id/883345/es

Li, T., & Hu, H. (2021). Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Management and Healthcare Policy, 14, 4293-4299.

DOI: https://doi.org/10.2147/RMHP.S323727

Lim, J. C. L., Loh, N., Lam, H. H., Lee, J. W., Liu, N., Yeo, J. W., & Ho, A. F. W. (2022). The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review. Journal of Clinical Medicine, 11(19), 5744. DOI: https://doi.org/10.3390/jcm11195744

Lu, J., Ling, K., Zhong, W., He, H., Ruan, Z., & Han, W. (2023). Construction of a 5G-based, three-dimensional, and efficiently connected emergency medical management system. Heliyon, 9(3), e13826. DOI: https://doi.org/10.1016/j.heliyon.2023.e13826

Madanian, S., Norris, T., & Parry, D. (2020). Disaster eHealth: Scoping Review. Journal of Medical Internet Research, 22(10), e18310. DOI: https://doi.org/10.2196/18310

Medina Díaz, P., Cintora Sanz, A.M., González Rico, P., Domínguez Pérez, M.L., Blanco Hermo, P. y Gómez de la Oliva, S. 2022. Proyecto INTREPID: La tecnología del futuro, ahora. Paraninfo Digital. 34 (oct. 2022), e34069d.

Norris, A., Martinez, S., Labaka, L., Madanian, S., Gonzalez, J., & Parry, D. (2015). Disaster E-Health: A New Paradigm for Collaborative Healthcare in Disasters. DOI: https://doi.org/10.13140/RG.2.1.3428.6248

Oliver, F. (s. f.). Six ways drones are helping in emergency response. Recuperado 30 de agosto de 2023, de https://www.scaleflyt.com/news/six-ways-drones-are-helping-in-emergency-response

Orbea, D., Cruz Ulloa, C., Del Cerro, J., & Barrientos, A. (2023). RUDE-AL: Roped UGV Deployment Algorithm of an MCDPR for Sinkhole Exploration. Sensors (Basel, Switzerland), 23(14), 6487. DOI: https://doi.org/10.3390/s23146487

Ortiz, J. S., Zapata, C. F., Vega, A. D., Santana G., A., & Andaluz, V. H. (2018). Heterogeneous Cooperation for Autonomous Navigation Between Terrestrial and Aerial Robots.

En K. J. Kim, H. Kim, & N. Baek (Eds.), IT Convergence and Security 2017 (287-296). Springer. DOI: https://doi.org/10.1007/978-981-10-6451-7_34

Petlon, J. G. (2023). Improving Communication between the Emergency Department and Prehospital Emergency Medical Services Through the Use of a Secure Messaging Application: A Quality Improvement Project (Master’s thesis). Retrieved from https://scholars.unh.edu/thesis/1685

Pervez, F., Qadir, J., Khalil, M., Yaqoob, T., Ashraf, U., & Younis, S. (2018). Wireless Technologies for Emergency Response: A Comprehensive Review and Some Guidelines. IEEE Access, 6, 71814-71838. DOI: https://doi.org/10.1109/ACCESS.2018.2878898

Półka, M., Ptak, S., & Kuziora, Ł. (2017). The Use of UAV’s for Search and Rescue Operations. Procedia Engineering, 192, 748-752. DOI: https://doi.org/10.1016/j.proeng.2017.06.129

Popescu, D., Vlasceanu, E., Dima, M., Stoican, F., & Ichim, L. (2020). Hybrid Sensor Network for Monitoring Environmental Parameters. 2020 28th Mediterranean Conference on Control and Automation (MED), 933-938. DOI: https://doi.org/10.1109/MED48518.2020.9183165

Robakowska, M., Ślęzak, D., Tyrańska-Fobke, A., Nowak, J., Robakowski, P., Żuratyński, P., Ładny, J., & Nadolny, K. (2019). Operational and Financial Considerations of Using Drones for Medical Support of Mass Events in Poland. Disaster Medicine and Public Health Preparedness, 13(3), 527-532. DOI: https://doi.org/10.1017/dmp.2018.106

Robakowska, M., Ślęzak, D., Żuratyński, P., Tyrańska-Fobke, A., Robakowski, P., Prędkiewicz, P., & Zorena, K. (2022). Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. International Journal of Environmental Research and Public Health, 19(17), 10754. DOI: https://doi.org/10.3390/ijerph191710754

Robot rescuers to help save lives after disasters | Research and Innovation. (s. f.). Recuperado 30 de agosto de 2023, de https://ec.europa.eu/research-and-innovation/en/horizon-magazine/robot-rescuers-help-save-lives-after-disasters

Sarcevic, A., Zhang, Z., & Kusunoki, D. S. (2012). Decision making tasks in time-critical medical settings. In Proceedings of the 17th ACM International Conference on Supporting Group Work, ACM, 99–102.

Shavarani, S. M. (2019). Multi-level facility location-allocation problem for post-disaster humanitarian relief distribution: A case study. Journal of Humanitarian Logistics and Supply Chain Management, 9(1), 70-81. DOI: https://doi.org/10.1108/JHLSCM-05-2018-0036

Sibley, A. K., Jain, T. N., Butler, M., Nicholson, B., Sibley, D., Smith, D., & Atkinson, P. (2019). Remote Scene Size-up Using an Unmanned Aerial Vehicle in a Simulated Mass Casualty Incident. Prehospital Emergency Care, 23(3), 332-339. DOI: https://doi.org/10.1080/10903127.2018.1511765

Song, Q., Gao, X., Song, Y., Li, Q., Chen, Z., Li, R., Zhang, H., & Cai, S. (2023). Estimation and mapping of soil texture content based on unmanned aerial vehicle hyperspectral imaging. Scientific Reports, 13(1), 14097. DOI: https://doi.org/10.1038/s41598-023-40384-2

Sustainability | Free Full-Text | The Efficiency of Drones Usage for Safety and Rescue Operations in an Open Area: A Case from Poland. (s. f.). Recuperado 30 de agosto de 2023, de https://www.mdpi.com/2071-1050/14/1/327

The First Responder of the Future: a Next Generation Integrated Toolkit for Collaborative Response, increasing protection and augmenting operational capacity. (2019). Horizon 2020, EU Research and Innovation program, European Commission. Community Research and Development Information Service (CORDIS). DOI: https://doi.org/10.3030/833435

Thiels, C. A., Aho, J. M., Zietlow, S. P., & Jenkins, D. H. (2015). Use of unmanned aerial vehicles for medical product transport. Air Medical Journal, 34(2), 104-108. DOI: https://doi.org/10.1016/j.amj.2014.10.011

Wen, T., Zhang, Z., & Wong, K. K. L. (2016). Multi-Objective Algorithm for Blood Supply via Unmanned Aerial Vehicles to the Wounded in an Emergency Situation. PloS One, 11(5), e0155176. DOI: https://doi.org/10.1371/journal.pone.0155176

Xue, Y., & Sun, J.-Q. (2018). Solving the Path Planning Problem in Mobile Robotics with the Multi-Objective Evolutionary Algorithm. Applied Sciences, 8(9), 9. DOI: https://doi.org/10.3390/app8091425

Zacharie, M., Fuji, S., & Minori, S. (2018). Rapid Human Body Detection in Disaster Sites Using Image Processing from Unmanned Aerial Vehicle (UAV) Cameras. 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 3, 230-235. DOI: https://doi.org/10.1109/ICIIBMS.2018.8549955

Zhang, G., Shang, B., Chen, Y., & Moyes, H. (2017). SmartCaveDrone: 3D cave mapping using UAVs as robotic co-archaeologists (p. 1057). DOI: https://doi.org/10.1109/ICUAS.2017.799149

Zhang, Z., Brazil, J., Ozkaynak, M., & Desanto, K. (2020). Evaluative Research of Technologies for Prehospital Communication and Coordination: a Systematic Review. Journal of medical systems, 44(5), 100. DOI: https://doi.org/10.1007/s10916-020-01556-z

Zhang, Z., Sarcevic, A., & Bossen, C. (2017). Constructing common information spaces across distributed emergency medical teams. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing (934–947). Portland, Oregon: ACM.

Zhang, Z., Sarcevic, A., Joy, K., Ozkaynak, M., & Adelgais, K. (2022). User Needs and Challenges in Information Sharing between Pre-Hospital and Hospital Emergency Care Providers. AMIA Annual Symposium Proceedings, 2021, 1254-1263.

Zhu, Z., Xiao, J., Li, J.-Q., Wang, F., & Zhang, Q. (2015). Global path planning of wheeled robots using multi-objective memetic algorithms. Integrated Computer-Aided Engineering, 22(4), 387-404. DOI: https://doi.org/10.3233/ICA-150498

Zixuan Zhang, Q. W. (2018). UAV flight strategy algorithm based on dynamic programming. Journal of Systems Engineering and Electronics, 29(6), 1293-1299. DOI: https://doi.org/10.21629/JSEE.2018.06.16

Published

2025-09-11