Avaliação, mitigação e comunicação do risco sísmico: ensinamentos do projeto PERSISTAH

Autores

DOI:

https://doi.org/10.14195/1647-7723_29-1_14

Palavras-chave:

Risco sísmico, reforço sísmico, comunicação do risco, escolas do Algarve

Resumo

O projeto PERSISTAH foi pioneiro em Portugal na utilização das metodologias de avaliação sísmica estipuladas no EC8, aplicando-as a um conjunto alargado de escolas do 1.º ciclo do ensino básico existentes na região do Algarve. Para que fosse possível atingir esse objetivo ambicioso, foi desenvolvido um programa informático que permite avaliar o nível de segurança sísmica de uma escola. No entanto, também é importante garantir que as populações entendam que mesmo que um edifício cumpra os requisitos de segurança sísmica estipulados num regulamento, as estruturas não são concebidas para resistir aos sismos intensos sem danos. Assim, a comunicação do risco sísmico é de grande importância para o aumento da resiliência sísmica das comunidades. Para isso, foram criados textos de apoio à comunidade estudantil de modo a facilitar a assimilação de conceitos e de medidas de autoproteção e de mitigação do risco, especialmente as relacionadas com os elementos não-estruturais, que poderão ficar seriamente danificados mesmo em edifícios corretamente projetados, podendo causar ferimentos ou mesmo a perda de vidas e das funções do edifício. Neste trabalho, foi usada a Escola EB2 de Sagres como ponto de referência dos resultados apresentados.

Downloads

Não há dados estatísticos.

Referências

Alberto, Y., Otsubo, M., Kyokawa, H., Kiyota, T. and Towhata, I. (2018). Reconnaissance of the 2017 Puebla, Mexico earthquake. Soils and Foundations, 58(5), 1073-1092. DOI: https://doi.org/10.1016/j.sandf.2018.06.007

Ambraseys, N. N., Douglas, J., Sarma, S. K. and Smit, P. M. (2005). Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Horizontal Peak Ground Acceleration and Spectral Acceleration. Bulletin of Earthquake Engineering, 3(1), 1-53.

DOI: https://doi.org/10.1007/s10518-005-0183-0

Angelier, J., Lee, J. C., Hu, J. C. and Chu, H. T. (2003). Three-dimensional deformation along the rupture trace of the September 21st, 1999, Taiwan earthquake: a case study in the Kuangfu school. Journal of Structural Geology, 25(3), 351-370. DOI: https://doi.org/10.1016/S0191-8141(02)00039-1

Augenti, N., Cosenza, E., Dolce, M., Manfredi, G., Masi, A. and Samela, L. (2004). Performance of School Buildings during the 2002 Molise, Italy, Earthquake. Earthquake Spectra, 20(S1), S257-S270. DOI: https://doi.org/10.1193/1.1769374

Barreto, V. e Estêvão, J. M. C. (2020). Feasibility of Using Steel Bracings for Seismic Retrofitting of RC School Buildings. Paper presented at the INCREaSE 2019, Cham, 1117-1127. DOI: https://doi.org/10.1007/978-3-030-30938-1_88

Bernhardsdottir, A. E., Musacchio, G., Ferreira, M. A. e Falsaperla, S. (2016). Informal education for disaster risk reduction. Bulletin of Earthquake Engineering, 14(7), 2105-2116. DOI: https://doi.org/10.1007/s10518-015-9771-9

Booth, E. (2018). Dealing with earthquakes: the practice of seismic engineering ‘as if people mattered’. Bulletin of Earthquake Engineering, 16(4), 1661-1724.

DOI: https://doi.org/10.1007/s10518-017-0302-8

Chen, H., Xie, Q., Lan, R., Li, Z., Xu, C. and Yu, S. (2017). Seismic damage to schools subjected to Nepal earthquakes, 2015. Natural Hazards, 88(1), 247-284.

DOI: https://doi.org/10.1007/s11069-017-2865-8

Chester, D. K. and Chester, O. K. (2010). The impact of eighteenth century earthquakes on the Algarve region, southern Portugal. The Geographical Journal, 176(4), 350–370. DOI: https://doi.org/10.1111/j.1475-4959.2010.00367.x

DGEEC e DSEE. (2017). Estatísticas da Educação 2016/2017. Direção-Geral de Estatísticas da Educação e Ciência (DGEEC).

Di Ludovico, M., Digrisolo, A., Moroni, C., Graziotti, F., Manfredi, V., Prota, A., Dolce, M and Manfredi, G. (2018). Remarks on damage and response of school buildings after the Central Italy earthquake sequence. Bulletin of Earthquake Engineering. DOI: https://doi.org/10.1007/s10518-018-0332-x

DRE - Diário da República Electrónico (2019). Portaria n.º 302/2019 de 12 de setembro Diário da República, 1.ª série, n.º 175 (pp. 134): XXI Governo Constitucional.

Estêvão, J. M. C. e Oliveira, C .S. (2010). Utilização de acelerogramas simulados na análise sísmica de estruturas. Paper presented at the 8º Congresso Nacional de Sismologia e Engenharia Sísmica, Aveiro, 1-13.

Estêvão, J. M. C. (2019). An integrated computational approach for seismic risk assessment of individual buildings. Applied Sciences, 9(23), 5088.

DOI: https://doi.org/10.3390/app9235088

Estêvão, J. M. C. (2020). Método computacional de avaliação do risco sísmico de escolas. UALGORITMO, 2, 17-21.

Estêvão, J. M. C. e Esteves, C.(2020). Nonlinear Seismic Analysis of Existing RC School Buildings: The “P3” School Typology. Buildings, 10(11), 210.

DOI: https://doi.org/10.3390/buildings10110210

Estêvão, J. M. C. e Tomás, B. (2021). Ranking the Seismic Vulnerability of Masonry School Buildings according to the EC8-3 by Using Performance Curves. International Journal of Architectural Heritage, 1-16. DOI: https://doi.org/10.1080/15583058.2021.1904458

Estêvão, J., Tomás, B., Laranja, R. e Braga, A. (2021). Seismic Retrofitting of an Existing Masonry School Building: A Case Study in Algarve. Paper presented at the Sustainability and Automation in Smart Constructions, Cham, 349-355. DOI: https://doi.org/10.1007/978-3-030-35533-3_42

Ferreira, M. (2012). Risco sísmico em sistemas urbanos. (PhD), Instituto Superior Técnico, UL, Lisboa.

Ferreira, M. A. (2009). L’Aquila earthquake viewed from World Wide Web: A Preliminary report - The first week The Newsletter of the European Association for Earthquake Engineering, 27(1), 6-16.

Geller, R. J. (2011). Shake-up time for Japanese seismology. Nature, 472, 407–409. DOI: https://doi.org/10.1038/nature10105

Giordano, N., De Luca, F. e Sextos, A (2020). Out-of-plane closed-form solution for the seismic assessment of unreinforced masonry schools in Nepal. Engineering Structures, 203, 109548. DOI: https://doi.org/10.1016/j.engstruct.2019.109548

IPQ - INSTITUTO PORTUGUÊS DA QUALIDADE (2010a). NP EN 1998-1. Eurocódigo 8: Projecto de estruturas para resistência aos sismos. Parte 1: Regras gerais, acções sísmicas e regras para edifícios (in Portuguese). Caparica, Portugal: Instituto Português da Qualidade.

IPQ - INSTITUTO PORTUGUÊS DA QUALIDADE (2010b). NP EN 1998-5. Eurocódigo 8: Projecto de estruturas para resistência aos sismos. Parte 5: Fundações, estruturas de suporte e aspectos geotécnicos. Caparica, Portugal: Instituto Português da Qualidade.

IPQ - INSTITUTO PORTUGUÊS DA QUALIDADE (2017). NP EN 1998-3. Eurocódigo 8: Projecto de estruturas para resistência aos sismos. Parte 3: Avaliação e reabilitação de edifícios. Caparica, Portugal: Instituto Português da Qualidade.

Kabeyasawa, T. (2017). Damages to RC school buildings and lessons from the 2011 East Japan earthquake. Bulletin of Earthquake Engineering, 15(2), 535-553. DOI: https://doi.org/10.1007/s10518-015-9825-z

Korkmaz, M., Ozdemir, M. A., Kavali, E. and Cakir, F. (2018). Performance-based assessment of multi-story unreinforced masonry buildings: The case of historical Khatib School in Erzurum, Turkey. Engineering Failure Analysis, 94, 195-213. DOI: https://doi.org/10.1016/j.engfailanal.2018.08.002

Lew, M., Naeim, F., Carpenter, L. D., Youssef, N. F., Rojas, F., Saragoni, G. R. and Adaros, M. S. (2010). The significance of the 27 February 2010 offshore Maule, Chile earthquake. The Structural Design of Tall and Special Buildings, 19(8), 826-837. DOI: https://doi.org/10.1002/tal.668

MAOTDR - MINISTÉRIO DO AMBIENTE, DO ORDENAMENTO DO TERRITÓRIO E DO DESENVOLVIMENTO REGIONAL (2004). ProtAlgarve. Volume II - Caracterização e diagonóstico. Anexo J - Apreciação do risco sísmico no Algarve: Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional.

MAOTDR - MINISTÉRIO DO AMBIENTE, DO ORDENAMENTO DO TERRITÓRIO E DO DESENVOLVIMENTO REGIONAL (2007). ProtAlgarve. Volume III - Elementos complementares: Ministério do Ambiente, do Ordenamento do Território e do Desenvolvimento Regional.

Marécos, J. A. E. e Castanheta, M. C. N. (1970). Estudo do comportamento de estruturas sob a acção do sismo de 28 de Fevereiro de 1969 (pp. 1-24). Lisbon: Laboratório Nacional de Engenharia Civil.

Mutch, C. (2015). Leadership in times of crisis: Dispositional, relational and contextual factors influencing school principals’ actions. International Journal of Disaster Risk Reduction, 14, 186-194. DOI: https://doi.org/10.1016/j.ijdrr.2015.06.005

O’Reilly, G. J., Perrone, D., Fox, M., Monteiro, R. and Filiatrault, A. (2018). Seismic assessment and loss estimation of existing school buildings in Italy. Engineering Structures, 168, 142-162. DOI: https://doi.org/10.1016/j.engstruct.2018.04.056

Oyguc, R. (2016). Seismic performance of RC school buildings after 2011 Van earthquakes. Bulletin of Earthquake Engineering, 14(3), 821-847.

DOI: https://doi.org/10.1007/s10518-015-9857-4

REBA (1967). Regulamento de estruturas de betão armado. Decreto n.º 47 723, de 30 de Maio de 1967. Lisboa: Imprensa Nacional.

REBAPE (1983). Regulamento de estruturas de betão armado e pré-esforçado. Decreto-Lei n.º 349-C/83, de 30 de Julho. Lisboa: Imprensa Nacional-Casa da Moeda, E.P.

Ribeiro, V. (2016). As escolas primárias dos Centenários: Subsídios para uma história das construções escolares no Algarve. Apontamentos para a história das culturas de escrita : da idade do ferro à era digital (pp. 289-311). Faro: Universidade do Algarve.

Rodgers, J. E. (2012). Why Schools are Vulnerable to Earthquakes. Paper presented at the 15th World Conference on Earthquake Engineering, Lisbon, 1-10.

RSAEEP. (1983). Regulamento de segurança e acções para estruturas de edifícios e pontes. Decreto-Lei n.º 235/83, de 31 de Maio. Lisboa: Imprensa Nacional-Casa da Moeda, E.P.

RSCCS (1958). Regulamento de segurança das construções contra os sismos. Decreto n. 41 658, de 31 de Maio de 1958. Lisboa: Imprensa Nacional.

RSEP (1961). Regulamento de solicitações em edifícios e pontes. Decreto n.º 44 041, de 18 de Novembro de 1961. Lisboa: Imprensa Nacional.

Salcioglu, E. (2010). Mental health consequences of earthquakes and their effective treatment: a control focused behavioral treatment approach. Paper presented at the II Conferenza Tematica Nazionale Società Italiana Riabilitazione Psicosociale, L’Aquila, 19-20.

Silva, S., Terrinha, P., Matias, L., Duarte, J. C., Roque, C., Ranero, C. R., Geissler, W. H., and Zitellini, N. (2017). Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics, 717, 226-241. DOI: https://doi.org/10.1016/j.tecto.2017.07.026

Teves-Costa, P., Batlló, J., Matias, L., Catita, C., Jiménez, M. J. and García-Fernández, Mar. (2019). Maximum intensity maps (MIM) for Portugal mainland. Journal of Seismology, 23(3), 417-440. DOI: https://doi.org/10.1007/s10950-019-09814-5

Tomás, B., Barreto, V. and Estêvão, J. M. C. (2019). Avaliação da viabilidade da utilização de elementos de contraventamento em aço como medida de reforço sísmico de escolas existentes no Algarve. Paper presented at the XII Congresso de Construção Metálica e Mista, Coimbra, 547-553.

Vangi, D. (2009). Simplified method for evaluating energy loss in vehicle collisions. Accident Analysis & Prevention, 41(3), 633-641. DOi: https://doi.org/10.1016/j.aap.2009.02.012

Zeng, E. J, and Bordeaux Silverstein, L. (2011). China earthquake relief: Participatory action work with children. School Psychology International, 32(5), 498-511. DOI: https://doi.org/10.1177/0143034311402921

##submission.downloads##

Publicado

2021-12-17