Application of new technologies for mapping the susceptibility to risk in the "Caminho de FERRO" [‘railway’] ravine in Luena (Moxico, Angola)
DOI:
https://doi.org/10.14195/1647-7723_27-1_6Keywords:
Erosion, unmanned aerial vehicle, geographic information system, Luena, ravinesAbstract
Currently, the places chosen for residential areas take some criteria into account, closeness to workplaces, good accessibility and landscape. But the topography of the land, such as the existence of gullies or watercourses are often disregarded, and these can become areas highly susceptible to the occurrence of floods and landslides. This problem is greatly magnified by erroneous human intervention, and therefore measures to minimize the damages caused by these phenomena are needed urgently. By using geographic information systems and unmanned aerial vehicles (drones), this research aims to produce cartographic elements that intrinsically and extrinsically characterize the sites susceptible to hidric erosion. The study area is a section of a ravine, known as the Caminhos de Ferro [‘Railways’], in Luena, a town in Moxico province (eastern Angola). The model created shows that there is a very high susceptibility to water erosion in the rainy season and moderate susceptibility in the dry period. It can create a risk for the railway infrastructure that connects the port of Lobito to Luau (border with the Democratic Republic of Congo).
Downloads
References
Agência Lusa (2013, 15 de março). Chuvas fortes no leste de Angola provocaram já seis mortos e milhares de desalojados. https://www.rtp.pt/noticias/mundo/chuvas-fortes-no-leste-de-angola-provocaram-ja-seis-mortos-e-milhares-de-desalojados_n635895. Acesso em: 28 de janeiro de 2019.
ANGOP, Agência Ângola Press. (2013, 15 de março). Chuva interdita circulação do comboio no troço Kuito/Luena. http://www.angop.ao/angola/pt_pt/especiais/reconstrucao-nacional/2013/2/11/Chuva-interdita-circulacao-comboio-troco-Kuito-Luena,871df9ea-b940-450c-a39f-13feb96b65e9.html. Acesso em: 28 de janeiro de 2019.
ANGOP, Agência Ângola Press. (2016, 16 de novembro). Moxico: Chuva desaloja mais de 100 pessoas no Léua e arredores do Luena. http://www.angop.ao/angola/pt_pt/noticias/sociedade/2016/10/46/Moxico-Chuva-desaloja-mais-100-pessoas-Leua-arredores-Luena,e1182628-9d67-43c1-a683-4896b0d6e77c.html. Acesso em: 28 de janeiro de 2019.
Arnoldus, H. M. J. (1980). An approximation of the rainfall factor in the Universal Soil Loss Equation. An approximation of the rainfall factor in the Universal Soil Loss Equation, 127-132.
Bougonoviae M., Husnjak S., Kusan V., Vidaeek, Z., Sraka M., Alexandra M. (1999). Assessment of soil erosion by water in the Butoniga catchment area in Crotia. En: Bech J (ed.). 6th International Meeting on Soils with Mediterranean Type of Climate. Extended Abstracts. UB Publicacions. Barcelona, 997-999.
CORINE-CEC. (1992). CORINE soil erosion risk and important land resources. An assesment to evaluate and map the distribution of land quality and soil erosion risk. Office for official publications of the European Communities. EUR 13233. Luxemburgo.
Danielson, J. J., and Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010), US Geological Survey. Open File Rep., 2011‐1073, 25 p.
Diniz, A. C. (2006). Características Mesológicas de Angola, Descrição e Correlação dos Solos e da Vegetação das Zonas Agrícolas Angolanas. Instituto Português de Apoio ao Desenvolvimento, Lisboa, 546 p.
do Ambiente, R. D. E. G. em Angola. (2006).Programa de Investimento Ambiental. Ministério do Urbanismo e Ambiente, 326 p.
Fernández, H. M. N. P. V. (2012). Elaboración de un modelo digital del terreno de la zona norte de la Sierra de Grândola (Alentejo, Portugal) (Tesis Doctoral, no publicado), Universidad de Sevilla, Sevilla.
Ferreira, J. C., Diogo, J. J. (2015). Mitigação do efeito da erosão do solo na cidade do Luena: Contenção de ravinas e gestão sustentável dos solos. In VIII Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa, Aveiro. Disponível em: http://www.aprh.pt/ZonasCosteiras2015/pdf/1B4_Artigo_006.pdf. [Acedido em 17 de dezembro de 2017]
Frankl, A., Poesen, J., Deckers, J., Haile, M., and Nyssen, J. (2012). Gully head retreat rates in the semi-arid highlands of Northern Ethiopia. Geomorphology, 173, 185-195.
Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., and Derry, D. (2002). Vegetation and soil lines in visible spectral space: a concept and technique for remote estimation of vegetation fraction. International. Journal of Remote Sensing, 23(13), 2537−2562.
Gonçalves, J. A., Bastos, L. and Yan W. (2015). Georreferenciação direta rigorosa de imagens aéreas com GNSS e técnica de structure from motion. VIII Conferência Nacional de Cartografia e Geodesia, Lisboa. Disponível em: http://viiicncg.ordemengenheiros.pt/fotos/editor2/VIIICNCG/cncg2015_comunicao_77.pdf. [Acedido em 10 de novembro de 2017]
INSTITUTO NACIONAL DE METEOROLOGIA E GEOFÍSICA DE ANGOLA - INAMET. (2016). Disponível em: http://ciencia.ao/sistema-nacional-de-ciencia/instituicoes-de-investigacao-cientifica-e desenvolvimento/92-instituto-nacional-de-geofisica-e-meteorologia. [Acedido em 31 de agosto de 2016].
Jordán A. (2000). El medio físico del Campo de Gibraltar. Unidades geoorfoedáficas y riesgo de erosión. (Tesis Doctoral no publicado), Universidad de Sevilla, Sevilla.
Jordán A., Bellinfante N. (2000). Cartografía de la erosividad de la lluvia estimada a partir de datos pluviométricos mensuales en el Campo de Gibraltar (Cádiz). Edafología 7-3, 83-92.
Jordán, A., Zavala, L. M. and Bellinfante, N. (2000). Assesment of the erosion risks in humid Mediterranean areas. In Workshop On Technologies For And Management Of Erosion And Desertification Control İn The Mediterranean Region, Priority Actions Programme, UNEP, Malta, 1-13.
Husnjak, S. (2001). Investigating erosion in the Butoniga River catchment area. Hrvatske vode: časopis za vodno gospodarstvo, 9(35), 127.
Kheir, R., Wilson, J. and Deng, Y. (2007). Use of terrain variables for mapping gully erosion susceptibility in Lebanon. Earth Surf. Process. Landforms, 32, 1770–1782.
Le Roux, J. J., Morgenthal, T. L., Malherbe, J., Pretorius, D. J. and Sumner, P. D. (2008). Water erosion prediction at a national scale for South Africa. Water SA, 34(3), 305-314.
Lesschen, J. P., Stoorvogel, J. J., Smaling, E. M. A., Heuvelink, G. B. M. and Veldkamp, A. (2007). A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutrient Cycling in Agroecosystems, 78(2), 111-131.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
Marques, M. M. (1977). Esboço das grandes unidades geomorfológicas de Angola. Instituto de Investigação Científica Tropical, Garcia de Orta, Serviços Geológicos, Lisboa, 2(1), 41-43.
Martinez-Casasnovas (2003). A spatial information technology approach for the mapping and quantification of gully erosion, Catena, Elsevier, 50, 293–308.
Martins, B., Lourenço, L. and Monteiro, S. (2018). Natural Hazards in Sao Vicente (Cabo Verde). Journal of Environmental Geography, 11(1-2), 1-8.
Mutowo, G. e Chikodzi, D. (2013). Erosion Hazard Mapping in the Runde Catchment: Implications for Water Resources Management. Journal of Geosciences and Geomatics, 1(1), 22-28.
Nunes, M. S. D. e Quinta-Nova, L. C. (2015). Cartografia do risco de incêndio florestal e do risco de erosão hídrica no concelho de Pampilhosa da Serra. Agroforum, (34), 7-21.
Okou, F. A., Tente, B., Bachmann, Y. and Sinsin, B. (2016). Regional erosion risk mapping for decision support: A case study from West Africa. Land Use Policy, (56), 27-37.
PAP/RAC. (1997). Guidelines for mapping and measurement of rainfall-induced erosion processes in the Mediterranean coastal areas. PAP-8/PP/GL.1. PAP/RAC (MAP/UNEP). Split.
Poesen J. W, Vandaele K. and Van W. B. (1998). Gully erosion: importance and model implications. In: Boardman, J., Favis- Mortlock, D. (Eds.), Modelling Soil Erosion by Water. NATO AS Series, Springer-Verlag, Berlin. I (55), 285–311.
Richards A. J. (1983). Remote Sensing Digital Image Analysis. An Introduction, Springer-Verlag, New York, 127-142.
Shervais, K. and Dietrich J. (2016). Structure from Motion (SfM) Photogrammetry Data Exploration and Processing Manual. Guide. Unavco, 28 p.
Velasco, I., & Cortés, G. (2009). Indices de Fournier modificado y de concentración de la precipitación, como estimadores del factor de riesgo de la erosión, en Sinaloa, México. In Avances en estudios sobre desertificación: aportaciones al Congreso Internacional sobre Desertificación en memoria del profesor John B. Thornes, 431-434. Universidad de Murcia.
Verhoeven, G. (2011). Taking computer vision aloft–archaeological three‐dimensional reconstructions from aerial photographs with photoscan. Archaeological Prospection, 18(1), 67-73.
Zavala, L. M. M. (2001). Análisis territorial de la comarca del Andévalo Occidental: una aproximación desde el medio físico (Tesis Doctoral no publicado), Universidad de Sevilla, Sevilla.
Zhou, Q. and Liu, X. (2004). Error analysis on grid-based slope and aspect algorithms. Photogrammetric Engineering & Remote Sensing, 70(8), 957-962.
Downloads
Published
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing the work with recognition of authorship and initial publication in Antropologia Portuguesa journal.