Principal component analysis of C-SAR images for flood mapping – Santa Fé province, Argentina
DOI:
https://doi.org/10.14195/1647-7723_27-2_4Keywords:
Sentinel-1, time series analysis, principal components, Argentina.Abstract
Flood events are phenomena associated with heavy rainfall. In Argentina, floods have high economic and social costs, including loss of human life. In this paper, principal component analysis (PCA) is used to map flood-prone areas along the Paraná river in Santa Fe, Argentina. The Sentinel-1B (S1B) images, sensor C-SAR with VH polarisation Interferometric type (IW) Ground Range Detected (GRD) with spatial resolution of 10 m, from 2016, were referenced and the PCA method was used to extract the four first principal components. The flood-affected images make it possible to accurately define the flooded area. In targets with dense vegetation, however, there is no pixel backscatter pattern. PC2 better highlighted the threshold of pixel intensity, with an accuracy of 70%, and 93% of the mapped area was shown to be flood-prone. Procedures to map floods remotely are pivotal because they can quickly obtain precise data on flood areas that may not be accessible for fieldwork or that have not yet been mapped in great detail.
Downloads
References
Abdi, H., & Williams, L. J. (2010). Principal component analysis: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. DOI: https://doi.org/10.1002/wics.101
Agrolink. (2018). Argentina pode perder 10% da safra de soja com incêndios e inundações. Accessed 30th December 2018, on https://www.agrolink.com.br/agrotempo/noticia/argentina-pode-perder-10--dasafra-de-soja-com-incendios-e-inundacoes_368135.html
Argentina floods - activations - International Disasters Charter. (2019). Accessed 16th January 2019, on https://disasterscharter.org/web/guest/activations/-/article/argentina-floo-6
Benzaquén, L., & Argentina (Orgs.). (2013). Inventario de los humedales de Argentina: sistemas de paisajes de humedales del corredor fluvial Paraná-Paraguay (1a edición). Buenos Aires: Secretaría de Ambiente y Desarrollo Sustentable de la Nación.
Brivio, P. A., Colombo, R., Maggi, M., & Tomasoni, R. (2002). Integration of remote sensing data and GIS for accurate mapping of flooded areas. International Journal of Remote Sensing, 23(3), 429–441. DOI: https://doi.org/10.1080/01431160010014729
Celis, A. (2006). Desastres en la Región Litoral de Argentina: 1970-2004. PAMPA, (2), 85–109. DOI: https://doi.org/10.14409/pampa.v1i2.3132
Centro de Informaciones Meteorológicas (2018). Altura de la Cuenca del Paraná. Accessed 10th June 2018, on http://fich.unl.edu.ar/cim/alturas-rio-parana
Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection: Multi-temporal SAR flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168. DOI: https://doi.org/10.1111/jfr3.12303
Correio do Brasil (2018). Argentina pede créditos para reconstruir cidade inundada. Accessed 30th December 2018, on https://arquivo.correiodobrasil.com.br/argentina-pede-creditos-para-reconstruir-cidade-inundada/
Crosta, A. P. (1992). Processamento Digital de Imagens de Sensoriamento Remoto. IG/UNICAMP, Campinas, SP, 170 p.
Dutsenwai, H. S., Ahmad, B. B., Mijinyawa, A., & Tanko, A. I. (2016). 37 Fusion of SAR images for flood extent mapping in northern peninsula Malaysia. International Journal of Advanced and Applied Sciences, 3(12), 37–48. DOI: https://doi.org/10.21833/ijaas.2016.12.006
ESA/CCI viewer. (2015). Land cover and conditions of the Climate Change Initiative project. Accessed 18th May 2017, on http://maps.elie.ucl.ac.be/CCI/viewer/index.php
Fe, G. de S. (2018). Gobierno de santa fe - traslado de animales por la emergencia hídrica. Accessed 21st December 2018, on https://www.santafe.gob.ar/index.php/web/content/view/full/159155/(subtema)/93794
Gómez-Palacios, D., Torres, M. A., Reinoso, E. (2017). Flood mapping through principal component analysis of multitemporal satellite imagery considering the alteration of water spectral properties due to turbidity conditions. Geomatics, Natural Hazards and Risk, 8(2), 607–623. DOI: https://doi.org/10.1080/19475705.2016.1250115
Graosque, J. Z. (2018). Mapeamento das áreas de inundação utilizando imagens C–SAR e SRTM , nas províncias de Santa Fé e Entre Ríos, Argentina. Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geografia, Porto Alegre. Accessed on http://hdl.handle.net/10183/179578
Henebry, M. G. (2014). Advantages of principal components analysis for land cover segmentation from SAR image series. Accessed 22nd December 2018, on http://earth.esa.int/workshops/ers97/papers/henebry3/index.html
Henry, J. ‐B., Chastanet, P., Fellah, K., & Desnos, Y. ‐L. (2006). Envisat multi‐polarized ASAR data for flood mapping. International Journal of Remote Sensing, 27(10), 1921–1929. DOI: https://doi.org/10.1080/01431160500486724
Hess, L., Melack, J. M. (1994). Mapping wetland hydrology and vegetation with Synthetic Aperture Radar. International Journal of Ecology and Environmental Sciences, v. 20, 197–205.
Kandus, P., Karszenbaum, H., Pultz, T., Parmuchi, G., & Bava, J. (2001). Influence of flood conditions and vegetation status on the radar backscatter of wetland ecosystems. Canadian Journal of Remote Sensing, 27(6), 651–662. DOI: https://doi.org/10.1080/07038992.2001.10854907
Malnes, E., Guneriussen, T., Høgda, K. A. (2002). Mapping of Flood-area by Radarsat in Vannsjø, Norway. In Proc. International Symposium on Remote Sensing of Environment, Buenos Aires.
Markert, K. N., Chishtie, F., Anderson, E. R., Saah, D., & Griffin, R. E. (2018). On the merging of optical and SAR satellite imagery for surface water mapping applications. Results in Physics, 9, 275–277. DOI: https://doi.org/10.1016/j.rinp.2018.02.054
Noticias Agricolas (2018). Quase 3,5 milhões de hectares estão afetados pelas inundações na Argentina;... - Notícias Agrícolas. Accessed 30th December 2018, on https://www.noticiasagricolas.com.br/noticias/soja/185742-quase-35-milhoes-de-hectares-estao-afetados-pelas-inundacoes-na-argentina-saiba-o-que-aconteceu-ate.html
Rahman, M. R., & Thakur, P. K. (2018). Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (Sar) satellite data and GIS: A case study from the Kendrapara District of Orissa State of India. The Egyptian Journal of Remote Sensing and Space Science, 21, S37–S41. DOI: https://doi.org/10.1016/j.ejrs.2017.10.002
Santa fe mapas | el mapa interactivo de la ciudad de santa fe. (2018). Accessed 21st December 2018, on
http://muniweb1.santafeciudad.gov.ar/santafemapas/#
Santoro, M., & Wegmuller, U. (2014). Multi-temporal synthetic aperture radar metrics applied to map open water bodies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3225–3238. DOI: https://doi.org/10.1109/JSTARS.2013.2289301
Santoro, M., Wegmüller, U., Lamarche, C., Bontemps, S., Defourny, P., & Arino, O. (2015). Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sensing of Environment, 171, 185–201. DOI: https://doi.org/10.1016/j.rse.2015.10.031
Sanyal, J., & Lu, X. X. (2004). Application of remote sensing in flood management with special reference to monsoon asia: a review. Natural Hazards, 33(2), 283–301. DOI: https://doi.org/10.1023/B:NHAZ.0000037035.65105.95
Sato, L. Y., Shimabukuro, Y. E., Kuplich, T. M. (2011). Uso da análise por componentes principais na avaliação da mudança da cobertura florestal da Floresta Nacional do Tapajós. Anais XV Simpósio Brasileiro de Sensoriamento Remoto - SBSR, Curitiba, PR, Brasil, INPE, 6696 p.
Solbø, S., Solheim, I. (2004). Towards Operational Flood Mapping with Satellite SAR. Norut Information Technology AS. Tromsø Science Park, N-9291 Tromsø, Norway. Proc. of the 2004 Envisat & ERS Symposium, Salzburg, Austria.
Tingsanchali, T. (2012). Urban flood disaster management. Procedia Engineering, 32, 25–37. DOI: https://doi.org/10.1016/j.proeng.2012.01.1233
Townsend, P. A. (2002). Relationships between forest structure and the detection of flood inundation in forested wetlands using C-band SAR. International Journal of Remote Sensing, 23(3), 443–460. DOI: https://doi.org/10.1080/01431160010014738
Townsend, P. A. (2001). Mapping seasonal flooding in forested wetlands using multitemporal Radarsat SAR. Photogrammetric Eng. Remote Sensing, v. 67(7), p.857864.
Townsend, P. A., & Walsh, S. J. (1998). Modeling floodplain inundation using an integrated GIS with radar and optical remote sensing. Geomorphology, 21(3–4), 295–312. DOI: https://doi.org/10.1016/S0169-555X(97)00069-X
Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A., & Evans, D. L. (2005). Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4), 185–198. DOI: https://doi.org/10.1016/j.isprsjprs.2005.02.002
Tuan, T. A., & Duong, N. D. (2009). Flood Monitoring Using ALOS/PALSAR Imagery . In TS 3E - Disaster Risk Management: Approaches and Consequences . Hanoi, Vietnam: Spatial Data Serving People: Land Governance and the Environment.
Vallejos, O., Matharán, G., Marichal, M. E. (2014). Las inundaciones en la ciudad de Santa Fe, Argentina, vistas desde una perspectiva CTS. Revista Iberoamericana de Ciencia, Tecnología y Sociedad, n.º 25, vol. 9, 147-180.
Wu, H., Adler, R. F., Tian, Y., Huffman, G. J., Li, H., & Wang, J. (2014). Real-time global flood estimation using satellite-based precipitation and a coupled land surface and routing model. Water Resources Research, 50(3), 2693–2717. DOI: https://doi.org/10.1002/2013WR014710
Yan, K., Di Baldassarre, G., Solomatine, D.P., and Schumann, G.J‐P. ( 2015). A review of low‐cost space‐borne data for flood modelling: topography, flood extent and water level. Hydrol. Process., 29, 3368– 3387. doi: https://doi.org/10.1002/hyp.10449
Downloads
Published
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing the work with recognition of authorship and initial publication in Antropologia Portuguesa journal.