Safety of the oil and gas sector in Brazil: past climate and future scenarios faced with climate change

Authors

DOI:

https://doi.org/10.14195/1647-7723_29-2_2

Keywords:

Major accident,, oil and gas,, atmospheric risk,, climate change.

Abstract

Emissions, fire, or explosions of harmful substances are called a major accident. Such events can be caused or aggravated by atmospheric conditions. The purpose of this paper is to address the variables and events of the atmosphere in Brazil with the potential for harming the safety of the oil and gas sector. The wind, temperature, and precipitation, as well as lightning, heatwaves, and tornadoes, are analysed for 12 sub-areas with extraction oil and gas or the refining, storage, and transport of their products. Past climate (1961-2000) is analysed through numerical simulation and scientific literature. The risks of extreme values for temperature and wind were calculated for both the 1961-2000 period and future projections (2020-2099), which consider two possible scenarios, one optimistic and one pessimistic. Regarding the maximum temperature, projection results show increased risk for the future period compared with past climate, with more significant impact on the tropical sub-areas of Brazil. Considering the pessimistic scenario, the trend is for maximum risk in these tropical areas. In terms of extreme wind speed, the optimistic and pessimistic projections both show risk varying from 1 to 2, on a scale of 0 to 4 in the future climate period, which is the same standard observed during the past climate.

Downloads

Download data is not yet available.

References

Aliaga, M. K. L. (2016). Caso SHELL/BASF: Reflexões para um novo olhar sobre os acidentes ampliados. Revista do Tribunal Regional do Trabalho da 15ª Região, 49, 69-95.

Andrioni, M., Campos, C. P. de, Ferrero, B., Wainer, I., Pereira, J. E., Moita, D. M., & Bomventi, T. N. (2013). Climate Change Impacts in Offshore Operations at Campos Basin. In: Offshore Technology Conference, Rio de Janeiro.

Bernamrane, Y., Wybob, J. L., & Armand, P. (2013). Chernobyl and Fukushima nuclear accidents: what has changed in the use of atmospheric dispersion modeling?. Journal of Environmental Radioactivity, 126, 239-252.

Bertoli, A. L., & Ribeiro, M. S. (2006). Passivo ambiental: estudo de caso da Petróleo Brasileiro S.A. - Petrobrás. A repercussão ambiental nas demonstrações contábeis, em consequência dos acidentes ocorridos. Revista de Administração Contemporânea, 10(2), 117-136.

Bitencourt, D. P. (2019). Maximum wet-bulb globe temperature mapping in central–south Brazil: a numerical study. Meteorological Applications, 26, 385-395.

Bitencourt, D. P., Fuentes, M. V., Maia, P. A., & Amorim, F. T. (2016). Frequência, duração, abrangência espacial e intensidade das ondas de calor no Brasil. Revista Brasileira de Meteorologia, 31, 506-517.

Bitencourt, D. P., Fuentes, M. V., & Cardoso, C. S. (2013). Climatologia de ciclones explosivos para a área ciclogenética da América do Sul. Revista Brasileira de Meteorologia, 28, 43-56.

Bitencourt, D. P., Gan, M. A., Acevedo, O. C., Fuentes, M. V., Muza, M. N., Rodrigues, M. L. G., & Quadro, M. F. L. (2010). Relating winds along the southern Brazilian coast to extratropical cyclones. Meteorological Applications, 18, 223-229.

Brooks, H. E. (2013). Severe thunderstorms and climate change. Atmospheric Research, 123, 129-138.

Brooks, H. E., Lee, J. W., & Craven, J. P. (2003). The spatial distribution of severe thunderstorm and tornado environments from global reanalysis data. Atmospheric Research, 67-68, 73-94.

Cardoso, C. S., Bitencourt, D. P., & Mendonça, M. (2012). Comportamento do vento no setor leste de Santa Catarina sob influência de ciclones extratropicais. Revista Brasileira de Meteorologia, 27(1), 39-48.

Cavalcanti, I. F. A., Ferreira, N. J., Silva, M. G. A. J., & Dias, M. A. F. S. (2009). Tempo e Clima no Brasil. São Paulo: Oficina de Textos, 457 p.

Ceccherini, G., Russo, S., Ameztov, I., Romero, C. P., & Carmona-Moreno, C. (2016). Magnitude and frequency of heat and cold waves in recent decades: The case of South America. Natural Hazards Earth System Sciences, 16, 821-831.

Cho, J., Limb, G. J., Kimb, S. J., & Biobakute, T. (2018). Liquefied natural gas inventory routing problem under uncertain weather conditions. International Journal of Production Economics, 204, 18-29.

Chou, S.C., Bustamante, J.F., & Gomes, J.L. (2005). Evaluation of Eta Model seasonal precipitation forecasts over South America. Nonlinear Processes in Geophysics, 12, 537-555.

Chou, S. C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., & Marengo, J. (2014). Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. American Journal of Climate Change, 3, 512-527.

Chou, S.C., Lyra, A., Mourão, C., Dereczynski, C., Pilotto, I., Gomes, J., Bustamante, J., Tavares, P., Silva, A., Rodrigues, D., Campos, D., Chagas, D., Sueiro, G., Siqueira, G., Nobre, P., & Marengo, J. (2014) Evaluation of the Eta simulations nested in three global climate models. American Journal of Climate Change, 3, 438-454.

Cruz, A. M., & Krausmann, E. (2013). Vulnerability of the oil and gas sector to climate change and extreme weather events. Climatic Change. 121, 41-53.

Cruz, A. M., Steinberg, L. J., & Luna, R. (2001). Identifying Hurricane-Induced Hazardous Material Release Scenarios in a Petroleum Refinery. Natural Hazards Review, 2(4), 203-210.

Dias, M. (2011). An Increase in the Number of Tornado Reports in Brazil. Weather, Climate, and Society, 3, 209-217.

Fernandes, L. G., Alves, M. P. A., Zamparetti, A., Fuentes, M. V., & Bitencourt, D. P. (2016). Abrangência espacial da neve em Santa Catarina, Brasil, nos dias 22 e 23 de julho de 2013. Ciência e Natura, 38(1), 360-370.

Freitas, C. M., Porte, M. F. S., & Huet, M. J. M. (2000). Acidentes Industriais Ampliados: Desafios e perspectivas para o controle e a prevenção. Rio de Janeiro: Editora Fiocruz, 316 p.

Freitas, C. M., Porte, M. F. S., & Gomez, C. M. (1995). Acidentes químicos ampliados: um desafio para a saúde pública. Revista de Saúde Pública, 29(6), 503-514.

Fuentes, E. V., Bitencourt, D. P., & Fuentes, M. V. (2013). Análise da velocidade do vento e altura de onda em incidentes de naufrágio na costa brasileira entre os estados de Sergipe e do rio Grande do Sul. Revista Brasileira de Meteorologia, 28(3), 257-266.

Geirinhas, J. L., Trigo, R. M., Libonati, R., Coelho, C. A, & Palmeira, A. C. (2017). Climatic and synoptic characterization of heat waves in Brazil. International Journal of Climatology, 38(4), 1760-1776.

Godoy, L. A. (2007). Performance of Storage Tanks in Oil Facilities Damaged by Hurricanes Katrina and Rita. Journal of Performance of Constructed Facilities, 21(6), 441-449.

Goliger, A. M., & Milford, R. V. (1998). A review of worldwide occurrence of tornadoes. Journal of Wind Engineering and Industrial Aerodynamics, 74-76, 111-121.

International Labor Organization (ILO) - C174 - Prevention of Major Industrial Accidents Convention (No. 174). (2019). Recuperado de https://www.ilo.org/dyn/normlex/en/f?pNORMLEXPUB: 12100:0::NO::P12100_ILO_CODE:C174

Junior, L. M., & Lorenzi, R. L. (2007). Acidente químico com dióxido de enxofre em um populoso distrito de uma grande metrópole: Cenários de exposição a partir de um modelo Gaussiano de dispersão. Revista Brasileira de Saúde Ocupacional, 32(116), 31-37.

Krausmann, E., Renni, E., Campedel, M., & Cozzani, V. (2011). Industrial accidents triggered by earthquakes, floods and lightning: lessons learned from a database analysis. Natural Hazards, 59, 285-300.

Lacerda,G. B. M., Souza, C. R. G., Silva, C. & Freitas, M. A. V.(2012). Methodological proposal for assessment and adaptation in oil industry plants in Brazil’s coastland. WIT Transactions on Ecology and The Environment, Vol 159. 79-91.

Landucci, G., Antonioni, G., Tugnoli, A., & Cozzani, V. (2012). Release of hazardous substances in flood events: Damage model for atmospheric storage tanks. Reliability Engineering and System Safety, 106, 200-216.

Moss, R.H., Edmonds, J.Á., Hibbard, K.A., Manning, M.R., Rose, S.K., Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchell, J.F.B., Nakicenovic, N., Riahi, K., Smith, S.J.; Stouffer, R.J., Thomson, A.M., Weyant, J.P., & Wilbanks, T.J. (2010) The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756.

Nunes, L. H., Bona, L. de, & Candido, D. H. (2011). Tornado and waterspout climatology in Brazil. In: 6th European Conference on Severe Storms (ECSS 2011). Palma de Mallorca, Balearic Islands, Spain.

Pesquero, J.F., Chou, S.C., Nobre, C.A., & Marengo, J.A. (2009) Climate downscaling over South America for 1961-1970 using the Eta Model. Theoretical and Applied Climatology, 99, 75-93.

Pinto Jr, O., Pinto, I. R. C. A., & Ferro, M. A. S. (2013). A study of the long‐term variability of thunderstorm days in southeast Brazil. Journal of Geophysical Research: Atmospheres, 118(11), 5231-5246.

Pinto Jr, O. (2008). An overview of cloud-to-ground lightning research in Brazil in the last two decades. In: 20th International Lightning Detection Conference e 2nd International Lightning Meteorology Conference. Tucson, Arizona, USA.

Pinto, I. R. C. A., & Pinto Jr, O. (2003). Cloud-to-ground lightning distribution in Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 65, 733-737.

Renni, E., Krausmann, E., & Cozzani, V. (2010). Industrial accidents triggered by lightning. Journal of Hazardous Materials, 184, 42-48.

Rosenfeld, M. J. (2015). Cold weather can play havoc on natural gas systems. Pipeline & Gas Journal, 242(1), 64-69.

Sengul, H., Santella, N., Steinberg, L. J., & Cruz, A. M. (2012). Analysis of hazardous material releases due to natural hazards in the United States. Disasters, 36(4), 723-43.

Silva, R. R., & Haas, R. (2016). Ocean Global Warming Impacts on the South America Climate. Frontiers in Earth Science, 4(30), 1-8.

Thaning, L., & Baklanov, A. (1997). Simulation of the atmospheric transport and deposition on a local/mesa-and regional scale after hypothetical accidents at the Kola nuclear power plant. The Science of the Total Environment, 202, 199-210.

UNITED NATIONS ENVIRONMENTAL PROGRAMME (UNEP) - Awareness and preparedness for emergencies at local level (APELL) (2019). Recuperado de

https://www.unenvironment.org/explore-topics/disasters-conflicts/what-we-do/preparedness-and-response/awareness-and-preparedness

Van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., & Weyant, J. (2011a) A special issue on the RCPs. Climatic Change, 109, 1-4.

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., ... & Rose, S. K. (2011). The representative concentration pathways: an overview. Climatic change, 109(1), 5-31.

Vitte, A.C. (2003). O litoral brasileiro: a valorização do espaço e os riscos socioambientais. Territorium: Revista de Geografia Física Aplicada no Ordenamento do Território e Gestão de Riscos Naturais, n.º 10, Minerva, 61-67. DOI: https://doi.org/10.14195/1647-7723_10_4

Zou, T. (2018). Effect of global climate change projections on fatigue lifetime of permanently moored floating offshore structures. Tese (Doutorado) - Maritime and Transport Technology, Delft University of Technology – Delft.

Published

2022-10-03