Application and testing of the HIDRALERTA system under storm conditions

Authors

DOI:

https://doi.org/10.14195/1647-7723_28-2_11

Keywords:

HIDRALERTA, overtopping, moored ships, hurricane Lorenzo, Elsa and Fabien storms

Abstract

HIDRALERTA is a forecast, early warning and risk assessment system for port and coastal areas that uses estimates of sea-waves and water levels to evaluate overtopping/flooding events and risks associated with mooring ships. As a warning system, it is especially important that it gives an appropriate response in mild (with no false alarms) and storm conditions alike. This work presents the developments made so far to validate the system under storm events, with its application in the simulation of hurricane Lorenzo and the storms Elsa and Fabien. It can be concluded from the qualitative analysis that was performed that the warnings emitted by the system were in agreement with the damage/occurrences reported at the site. These results serve to reinforce confidence in the HIDRALERTA system. The distinguishing feature of this work is that the risk assessment is based on specific parameters related to the actual risk being predicted, such as overtopping discharges, or ship’s mooring loads, and not only in met-ocean parameters.

Downloads

Download data is not yet available.

References

Azevedo, E. B., Mendes, P., Gonçalo, V. (2008). Projectos CLIMAAT e CLIMARCOST Clima e Meteorologia dos Arquipélagos Atlânticos, Clima Marítimo e Costeiro. In Workshop Internacional sobre Clima e Recursos Naturais nos Países de Língua Portuguesa -WSCRA08.

Booij, N., Ris, R. C., Holthuijsen, L .H. (1999). A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geog. Res., C4, 104, 7649-7666.

Coeveld, E. M., van Gent, M. R. A., Pozueta, B. (2005). Neural Network: Manual NN_OVERTOPPING2, CLASH WP8 – Report BV.

Elzinga, T., Iribarren, J. R., Jensen O. J. (1992). Movements of moored ships in harbors. In Proceedings of 23rd International Conference on Coastal Engineering, ASCE, 3216-3229.

Flater, D. (1998). XTide Manual: Harmonic Tide Clock and Tide Predictor. Technical Report, USA.

URL: https://flaterco.com/xtide

Fortes, C. J. E. M., Reis, M. T., Pinheiro, L., Poseiro, P., Serrazina, V., Mendonça, A., Smithers, N., Santos, M. I., Barateiro, J., Azevedo, E. B., Salvador, M., Reis, F. V. (2020). The HIDRALERTA system: Application to the ports of Madalena do Pico and S. Roque do Pico, Azores. Journal of Aquatic Ecosystem Health & Management. DOI: https://doi.org/10.1080/14634988.2020.1807295

Fortes, C. J. E. M. (2002). Transformações Não Lineares de Ondas em Zonas Portuárias. Análise pelo Método dos Elementos Finitos (Doctoral Dissertation). IST-UL.

Gracia, V., García-León, M., Sánchez-Arcilla, A., Gault, J., Oller, P., Fernández, J., Sairouní, A., Cristofori, E., Toldrà, R. (2014). A new generation of early warning systems for coastal risk. The iCoast project. Coastal Engineering Proceedings, 1(34), 18. DOI: https://doi.org/10.9753/icce.v34.management.18

Korsemeyer F. T., Lee C. H., Newman J. N., Sclavounos P. D. (1988). The analysis of wave effects on tension-leg platforms. In proceedings of 7th International Conf. Offshore Mechanics and Arctic Engineering, Houston, Texas, 1-14.

Lane, A., Hu, K., Hedges, T., Reis, M.T. (2008). New north east of England tidal flood forecasting system. FLOODrisk 2008, Flood Risk Management: Research and Practice, 1377–1387.

Mynett, A. E., Keunig, P. J., Vis, F. C. (1985). The dynamic behaviour of moored vessels inside a harbour configuration. In proceedings of Int. Conf. on Numerical Modelling of Ports and Harbours, Birmingham, England: 23-25 April, Cranfield: BHRA, The Fluid Engineering Centre.

OCIMF - Oil Companies International Marine (1992). Mooring equipment guidelines. Witherby e Co. Ltd.

Persson, A. (2001). User Guide to ECMWF Forecast Products. Meteorological Bulletin M3.2. ECMWF, August, 115p.

PIANC - Permanent International Association of Navigation Congresses (1995). Criteria for movements of moored ships in harbors. Technical report Permanent International Association of Navigation Congresses, PIANC Supp.to bulletin no. 88.

PIANC - Permanent International Association of Navigation Congresses (2012). Guidelines for berthing structures related to thrusters. PIANC, Brussels, Belgium.

Pinheiro, L. V., Fortes, C. J. E. M., Abecasis Jalles, B. M, Santos, J. A. (2015). Simulation of wave action on a moored container carrier inside Sines’ Harbour. Maritime Technology and Engineering, Guedes Soares and Santos (Eds) Taylor & Francis Group, London, ISBN 978-1-138-02727-5.

Pinheiro, L., Fortes, C., Reis, M. T., Santos, J., Soares, C. G. (2020). Risk forecast system for moored ships, In proceedings of vICCE (virtual International Conference on Coastal Engineering), 6 a 9 de outubro.

Poseiro, P. (2019). Forecast and Early Warning System for Wave Overtopping and Flooding in Coastal and Port Areas: Development of a Model and Risk Assessment (Doctoral Dissertation). IST-UL.

Pullen, T., Allsop, N. W. H., Bruce, T., Kortenhaus, A., Schuttrumpf, H., Van Der Meer, J. (2007). EurOtop: Wave overtopping of sea defences and related structures: Assessment manual. Kuste.

Roelvink, D., Dongeren, A., van, McCall, R., Hoonhout, B., van Rooijen, A., van Geer, P. de Vet, L., Nederhoff, K. (2015). XBeach Manual. Deltares, UNESCO-IHE, Delft University of Technology.

Santos, J. A. (1994). MOORNAV – Numerical model for the behaviour of moored ships. Final report, Lisbon: Report 3/94-B, Proj NATO PO-Waves.

Stokes, K., Poate, T., Masselink, G., King, E., Saulter, A., Ely, N. (2021). Forecasting coastal overtopping at engineered and naturally defended coastlines. Coastal Engineering, 164, 103827. DOI: https://doi.org/10.1016/j.coastaleng.2020.103827

SWAN TEAM (2006). Swan User Manual version 40.51. Department of Civil Engineering and Geosciences, Delft university of Technology, Delft, The Netherlands, 111 p.

U.S. Army Corps of Engineers - USACE (2002), Coastal Engineering Manual (CEM), Engineer Manual 1110-2-1100, U.S. Army Corps of Engineers, Washington, D.C. (6 volumes).

Van der Meer, J. W., Van Gent, M. R. A., Pozueta, B., Verhaeghe, H., Steendam, G.J., Medina, Jr. (2005). Applications of a neural network to predict wave overtopping at coastal structures. In proceedings of ICE Coasts, Structures & Breakwaters’05, Thomas Telford, London, 259-268.

van Dongeren, A., Ciavola, P., Martinez, G., Viavattene, C., Bogaard, T., Ferreira, O., Higgins, R., McCall, R. (2018). Introduction to RISC-KIT: Resilience-increasing strategies for coasts. Coastal Engineering, 134, 2–9. DOI: https://doi.org/10.1016/j.coastaleng.2017.10.007

Van Gent, M. R. A., Pozueta, B., Van Den Boogaard, H. F. P., Medina, Jr. (2005). D42 Final Report on Generic Prediction Method. CLASH WP8 Report, Delft, Holanda, 33 p.

Van Gent, M. R. A., Van Den Boogaard, H., Pozueta, B., Medina, J. (2007). Neural network modeling of wave overtopping at coastal structures. Coastal Engineering, 586-593.

WAMDI Group (1988). The WAM Model - A third generation ocean wave prediction model. J. Physical Oceanography, 18, 1775-1810.

Zelinsky D. A. (2019). National Hurricane Center Tropical Cyclone Report: Hurricane Lorenzo (AL132019). NOAA/NWS, 22 p. URL: www.nhc.noaa.gov/data/tcr/AL132016_Lorenzo.pdf

Zijlema, M. Stelling, G., Smit, P. (2011). SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering, 58(10), 992-1012. DOI: https://doi.org./10.1016/J.COASTALENG.2011.05.015

Published

2021-07-07