Validação de modelos simplificados de previsão do tempo de liquefação através de ensaios de centrifugadora

Autores

  • Sara Rios CONSTRUCT-GEO, Dep. de Eng. Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Maxim Millen Departamento de Engenharia Civil e Recursos Naturais, Faculdade de Engenharia, Universidade de Canterbury, Christchurch, Nova Zelândia
  • António Viana da Fonseca CONSTRUCT-GEO, Dep. de Eng. Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Pedro Santos Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Giuseppe Mudanò Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Portugal

DOI:

https://doi.org/10.24849/j.geot.2020.148.03

Palavras-chave:

liquefação, ensaios de centrifugadora, métodos simplificados, métodos baseados na energia.

Resumo

Os danos resultantes da ocorrência de sismos podem resultar da combinação da excitação sísmica e/ou de incrementos de pressão neutra no solo (liquefação). Estes dois efeitos estão interligados, uma vez que a redução da rigidez do solo por efeito da diminuição da tensão efetiva altera o comportamento mecânico do solo, nomeadamente a sua resposta sísmica. Assim, o nível e o tipo de danos são dependentes da velocidade de aumento da pressão neutra e do tempo para o qual a liquefação é desencadeada no solo, associada à energia sísmica libertada ao longo do tempo. No entanto, a maioria dos métodos simplificados de previsão da liquefação foca-se na identificação desse desencadeamento e não no tempo para o qual esta se desenvolve. Assim, é fundamental melhorar e desenvolver estes métodos para que possam fornecer estimativas confiáveis do efeito deste processo de aumento de pressão neutra e consequente progresso da liquefação nos horizontes sensíveis. Nesse sentido, os ensaios de centrifugadora são uma excelente oportunidade para validar esses métodos. Este artigo apresenta dois métodos simplificados de previsão da liquefação, e valida-os através da sua utilização para prever o aumento da pressão neutra numa série de ensaios de centrifugadora.

Downloads

Não há dados estatísticos.

Referências

Airoldi, S.; Fioravante, V.; Giretti, D.; Moglie, J. (2018). Deliverable D 4.2 - Report on validation of retrofitting techniques from small scale models. LIQUEFACT Project, Horizon 2020 European Union funding for Research & Innovation, GA. Nº: 700748 (www.liquefact.eu)

Booker, J. R.; Rahman, M. S.; Seed, H. B. (1976). GADFLEA— A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading. Rep. No. EERC 76-24

Boulanger, R. W.; Idriss, I. M. (2006). Liquefaction Susceptibility Criteria for Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413)

Boulanger, R. W.; Idriss, I. M. (2012). Probabilistic Standard Penetration Test–Based Liquefaction–Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185–1195. https://doi.org/10.1061/(asce)gt.1943-5606.0000700

Boulanger, R. W.; Idriss, I. M. (2016). CPT-Based Liquefaction Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001388

Bouckovalas, G. D.; Tsiapas, Y. Z.; Zontanou, V. A.; Kalogeraki, C. G. (2017). Equivalent Linear Computation of Response Spectra for Liquefiable Sites: The Spectral Envelope Method. Journal of Geotechnical and Geoenvironmental Engineering, 143(4), 04016115–12. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001625

Bray, J. D.; Sancio, R. B.; Durgunoglu, T.; Onalp, A.; Youd, T. L.; Stewart, J. P.; Seed, R. B.; Cetin, O. K.; Bol, E.; Baturay, M. B.; Christensen; C.; Karadayilar T. (2004). Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering 130(7): 673-685

Bray, J. D.; Markham, C. S.; Cubrinovski, M. (2017). Liquefaction assessments at shallow foundation building sites in the Central Business District of Christchurch, New Zealand. Soil Dynamics and Earthquake Engineering, 92(10), 153–164. https://doi.org/10.1016/j.soildyn.2016.09.049

Brennan, A. J. (2003). Vertical drains as a countermeasure to earthquake induced soil liquefaction. Ph.D. Thesis, Cambridge University, United Kingdom

Cubrinovski, M.; Bray, J.; Taylor, M.; Giorgini, S.; Bradley, B.; Wotherspoon, L.; Zupan, J. (2011). Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismol. Res. Lett., 82(6), 893–904

Davis, R.; Berril, J. (1982). Energy dissipation and seismic liquefaction in sands. Earthquake Engineering & Structural Dynamics, 10(1), 59–68. https://doi.org/10.1002/eqe.4290100105

Fioravante, V.; Giretti, D. (2016). Unidirectional cyclic resistance of Ticino and Toyoura sands from centrifuge cone penetration tests. Acta Geotech. 11: 953. https://doi.org/10.1007/s11440-015-0419-3

Green, R. A.; Mitchell, J. K.; Polito, C. P. (2000). An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils. Proceeding of the John Booker Memorial Symposium, 1–9

Idriss, I. M. (1999). An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. In TRB Workshop on New Approaches to Liquefaction Publication No. FHWARD- 99-165. Federal Highway Administration

Idriss, I. M.; Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115–130 http://doi.org/10.1016/j.soildyn.2004.11.023

Karatzia, X.; Mylonakis, G.; Bouckovalas, G. (2019). Seismic isolation of surface foundations exploiting the properties of natural liquefiable soil. Soil Dynamics and Earthquake Engineering, 121, 233–251 http://doi.org/10.1016/j.soildyn.2019.03.009

Kishida, T.; Tsai, C.-C. (2014). Seismic Demand of the Liquefaction Potential with Equivalent Number of Cycles for Probabilistic Seismic Hazard Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 140(3), 04013023 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001033

Kokusho, T. (2013). Liquefaction potential evaluations: energy-based method versus stress-based method. Canadian Geotechnical Journal, 50(10), 1088–1099 https://doi.org/10.1139/cgj-2012-0456

Konno, K.; Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241

Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall, Inc

Kramer, S.; Hartvigsen, A. J.; Sideras, S. S.; Ozener, P. T. (2011). Site response modelling in liquefiable soil deposits. In 4th IASPEI - Effects of surface geology on seismic motion (pp. 1–12)

Lee, S. H.; Choo, Y. W.; Kim, D. S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dynamics and Earthquake Engineering, 44, 102-114

Mele L.; Lirer S.; Flora A. (2019). The effect of densification on Pieve di Cento sands in cyclic simple shear tests. VII Convegno Nazionale dei Ricercatori di Ingegneria Geotecnica (CNRIG), Lecco (Italy))

Millen, M.; Azerêdo, C.; Viana da Fonseca, A. (2019). Time-frequency filter for Computation of Surface Acceleration for 2Liquefiable Sites: The Equivalent Linear Stockwell Analysis Method, Journal of Geotechnical and Geoenvironmental Engineering (ASCE), GTENG-8177 submetido 27Jun2019, resubmetido 19Dec2019

Millen, M.; Rios, S.; Quintero, J.; Viana da Fonseca, A. (2019b). Prediction of time of liquefaction using kinetic and strain energy. Soil Dynamics and Earthquake Engineering https://doi.org/10.1016/j.soildyn.2019.105898

Polito, C. P.; Green, R. A.; Lee, J. (2008). Pore Pressure Generation Models for Sands and Silty Soils Subjected to Cyclic Loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10), 1490–1500 https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1490)

Seed, H.; Idriss, I.; Makdidi, F.; Nanerjee, N. (1975). Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses Report No. EERC 75–29. Earthquake Engineering Research Center, University of California Berkeley

Steedman, R. S.; Ledbetter, R. H.; Hynes, M. E. (2000). The influence of high confining stress on the cyclic behavior of saturated sand. ASCE Geotechnical Special Publication No.107, 35-57

Viana da Fonseca, A.; Millen, M.; Romão, X.; Quintero, J.; Rios, S.; Ferreira, C.; Panico, F.; Azeredo, C.; Pereira, N.; Logar, J.; Oblak, M.; Dolsek, M.; Kosic, M.; Kuder, S.; Logar, M.; Oztoprak, S., Kelesoglu, M., Sargin, S., Oser, C., Bozbey, I., Flora, A., Billota, E., Prota, A., Ludovico, M.; Chiaradonna, A.; Modoni, G.; Paolella, L.; Spacagna, R.; Lai, C.; Shinde, S.; Bozzoni, F. (2018). Deliverable D 3.2 - Methodology for the liquefaction fragility analysis of critical structures and infrastructures: description and case studies. LIQUEFACT project, Horizon 2020 European Union funding for Research & Innovation, GA nº. 700748 (www.liquefact.eu)

Yamaguchi, Y.; M. Kondo; T. Kobori (2012). Safety inspections and seismic behavior of embankment dams during the 2011 off the Pacific Coast of Tohoku earthquake. Soils and Foundations 52(5): 945-955

Zeng, X.; Schofield, A. N. (1996). Design and performance of an Equivalent Shear Beam (ESB) model container for earthquake centrifuge modelling. Geotechnique, 46(1), 83-102

##submission.downloads##

Publicado

2020-03-21

Edição

Secção

Artigos