Validation of liquefaction prediction models from geotechnical centrifuge tests results

Authors

  • Sara Rios CONSTRUCT-GEO, Dep. de Eng. Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Maxim Millen University of Canterbury, Christchurch, New Zeland
  • António Viana da Fonseca CONSTRUCT-GEO, Dep. de Eng. Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Pedro Santos Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Portugal
  • Giuseppe Mudanò Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Portugal

DOI:

https://doi.org/10.24849/j.geot.2020.148.03

Keywords:

liquefaction, centrifuge tests, simplified methods, energy based methods

Abstract

The damage resulting from earthquakes can result from the combination of seismic excitation and/or due to a build-up of excess pore pressure in the soil (liquefaction). These two effects are related, since the reduction in soil stiffness due to a decrease in effective stress changes the mechanical behaviour of the soil namely its seismic response. Therefore the expected level and type of damage is dependent on the rate of pore pressure build-up and time of liquefaction triggering in the soil, with respect to the release of seismic energy with time. However, most simplified liquefaction assessment methods are focused on liquefaction triggering and not on the time at which it occurs. Therefore, the improvement and development of these methods is essential so that they can provide reliable estimates of the effect of pore pressure increase and consequent liquefaction of sensitive layers. In that sense, centrifuge tests are an excellent opportunity to validate these methods. This paper presents two simplified liquefaction assessment methods, which are used to predict the pore pressure build up in a series of centrifuge tests.

Downloads

Download data is not yet available.

References

Airoldi, S.; Fioravante, V.; Giretti, D.; Moglie, J. (2018). Deliverable D 4.2 - Report on validation of retrofitting techniques from small scale models. LIQUEFACT Project, Horizon 2020 European Union funding for Research & Innovation, GA. Nº: 700748 (www.liquefact.eu)

Booker, J. R.; Rahman, M. S.; Seed, H. B. (1976). GADFLEA— A computer program for the analysis of pore pressure generation and dissipation during cyclic or earthquake loading. Rep. No. EERC 76-24

Boulanger, R. W.; Idriss, I. M. (2006). Liquefaction Susceptibility Criteria for Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 132(11), 1413–1426. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1413)

Boulanger, R. W.; Idriss, I. M. (2012). Probabilistic Standard Penetration Test–Based Liquefaction–Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 138(10), 1185–1195. https://doi.org/10.1061/(asce)gt.1943-5606.0000700

Boulanger, R. W.; Idriss, I. M. (2016). CPT-Based Liquefaction Triggering Procedure. Journal of Geotechnical and Geoenvironmental Engineering, 142(2), 04015065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001388

Bouckovalas, G. D.; Tsiapas, Y. Z.; Zontanou, V. A.; Kalogeraki, C. G. (2017). Equivalent Linear Computation of Response Spectra for Liquefiable Sites: The Spectral Envelope Method. Journal of Geotechnical and Geoenvironmental Engineering, 143(4), 04016115–12. http://doi.org/10.1061/(ASCE)GT.1943-5606.0001625

Bray, J. D.; Sancio, R. B.; Durgunoglu, T.; Onalp, A.; Youd, T. L.; Stewart, J. P.; Seed, R. B.; Cetin, O. K.; Bol, E.; Baturay, M. B.; Christensen; C.; Karadayilar T. (2004). Subsurface Characterization at Ground Failure Sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering 130(7): 673-685

Bray, J. D.; Markham, C. S.; Cubrinovski, M. (2017). Liquefaction assessments at shallow foundation building sites in the Central Business District of Christchurch, New Zealand. Soil Dynamics and Earthquake Engineering, 92(10), 153–164. https://doi.org/10.1016/j.soildyn.2016.09.049

Brennan, A. J. (2003). Vertical drains as a countermeasure to earthquake induced soil liquefaction. Ph.D. Thesis, Cambridge University, United Kingdom

Cubrinovski, M.; Bray, J.; Taylor, M.; Giorgini, S.; Bradley, B.; Wotherspoon, L.; Zupan, J. (2011). Soil liquefaction effects in the central business district during the February 2011 Christchurch earthquake. Seismol. Res. Lett., 82(6), 893–904

Davis, R.; Berril, J. (1982). Energy dissipation and seismic liquefaction in sands. Earthquake Engineering & Structural Dynamics, 10(1), 59–68. https://doi.org/10.1002/eqe.4290100105

Fioravante, V.; Giretti, D. (2016). Unidirectional cyclic resistance of Ticino and Toyoura sands from centrifuge cone penetration tests. Acta Geotech. 11: 953. https://doi.org/10.1007/s11440-015-0419-3

Green, R. A.; Mitchell, J. K.; Polito, C. P. (2000). An Energy-Based Excess Pore Pressure Generation Model for Cohesionless Soils. Proceeding of the John Booker Memorial Symposium, 1–9

Idriss, I. M. (1999). An update to the Seed-Idriss simplified procedure for evaluating liquefaction potential. In TRB Workshop on New Approaches to Liquefaction Publication No. FHWARD- 99-165. Federal Highway Administration

Idriss, I. M.; Boulanger, R. W. (2006). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26(2-4), 115–130 http://doi.org/10.1016/j.soildyn.2004.11.023

Karatzia, X.; Mylonakis, G.; Bouckovalas, G. (2019). Seismic isolation of surface foundations exploiting the properties of natural liquefiable soil. Soil Dynamics and Earthquake Engineering, 121, 233–251 http://doi.org/10.1016/j.soildyn.2019.03.009

Kishida, T.; Tsai, C.-C. (2014). Seismic Demand of the Liquefaction Potential with Equivalent Number of Cycles for Probabilistic Seismic Hazard Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 140(3), 04013023 https://doi.org/10.1061/(ASCE)GT.1943-5606.0001033

Kokusho, T. (2013). Liquefaction potential evaluations: energy-based method versus stress-based method. Canadian Geotechnical Journal, 50(10), 1088–1099 https://doi.org/10.1139/cgj-2012-0456

Konno, K.; Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241

Kramer, S. L. (1996). Geotechnical earthquake engineering. Prentice-Hall, Inc

Kramer, S.; Hartvigsen, A. J.; Sideras, S. S.; Ozener, P. T. (2011). Site response modelling in liquefiable soil deposits. In 4th IASPEI - Effects of surface geology on seismic motion (pp. 1–12)

Lee, S. H.; Choo, Y. W.; Kim, D. S. (2013). Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests. Soil Dynamics and Earthquake Engineering, 44, 102-114

Mele L.; Lirer S.; Flora A. (2019). The effect of densification on Pieve di Cento sands in cyclic simple shear tests. VII Convegno Nazionale dei Ricercatori di Ingegneria Geotecnica (CNRIG), Lecco (Italy))

Millen, M.; Azerêdo, C.; Viana da Fonseca, A. (2019). Time-frequency filter for Computation of Surface Acceleration for 2Liquefiable Sites: The Equivalent Linear Stockwell Analysis Method, Journal of Geotechnical and Geoenvironmental Engineering (ASCE), GTENG-8177 submetido 27Jun2019, resubmetido 19Dec2019

Millen, M.; Rios, S.; Quintero, J.; Viana da Fonseca, A. (2019b). Prediction of time of liquefaction using kinetic and strain energy. Soil Dynamics and Earthquake Engineering https://doi.org/10.1016/j.soildyn.2019.105898

Polito, C. P.; Green, R. A.; Lee, J. (2008). Pore Pressure Generation Models for Sands and Silty Soils Subjected to Cyclic Loading. Journal of Geotechnical and Geoenvironmental Engineering, 134(10), 1490–1500 https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1490)

Seed, H.; Idriss, I.; Makdidi, F.; Nanerjee, N. (1975). Representation of irregular stress time histories by equivalent uniform stress series in liquefaction analyses Report No. EERC 75–29. Earthquake Engineering Research Center, University of California Berkeley

Steedman, R. S.; Ledbetter, R. H.; Hynes, M. E. (2000). The influence of high confining stress on the cyclic behavior of saturated sand. ASCE Geotechnical Special Publication No.107, 35-57

Viana da Fonseca, A.; Millen, M.; Romão, X.; Quintero, J.; Rios, S.; Ferreira, C.; Panico, F.; Azeredo, C.; Pereira, N.; Logar, J.; Oblak, M.; Dolsek, M.; Kosic, M.; Kuder, S.; Logar, M.; Oztoprak, S., Kelesoglu, M., Sargin, S., Oser, C., Bozbey, I., Flora, A., Billota, E., Prota, A., Ludovico, M.; Chiaradonna, A.; Modoni, G.; Paolella, L.; Spacagna, R.; Lai, C.; Shinde, S.; Bozzoni, F. (2018). Deliverable D 3.2 - Methodology for the liquefaction fragility analysis of critical structures and infrastructures: description and case studies. LIQUEFACT project, Horizon 2020 European Union funding for Research & Innovation, GA nº. 700748 (www.liquefact.eu)

Yamaguchi, Y.; M. Kondo; T. Kobori (2012). Safety inspections and seismic behavior of embankment dams during the 2011 off the Pacific Coast of Tohoku earthquake. Soils and Foundations 52(5): 945-955

Zeng, X.; Schofield, A. N. (1996). Design and performance of an Equivalent Shear Beam (ESB) model container for earthquake centrifuge modelling. Geotechnique, 46(1), 83-102

Published

2020-03-21

Issue

Section

Articles