Análise limite recorrendo ao critério de rotura de Matsuoka-Nakai estendido em condições de deformação plana
DOI:
https://doi.org/10.14195/2184-8394_157_2Palavras-chave:
limit analysis, critério de Matsuoka-Nakai estendido, estado plano de deformação, método de direcção alternada de multiplicadores (MDAM)Resumo
Este artigo apresenta a implementação do critério de rotura de Matsuoka-Nakai Estendido numa formulação de Análise Limite, em condições de deformação plana. A abordagem apresentada é baseada num modelo misto de elementos finitos de três campos e no algoritmo de otimização que se designa por Método de Direção Alternada de Multiplicadores. Para esse propósito, é estabelecida e explorada uma equivalência entre o critério clássico de Mohr-Coulomb e o critério de Matsuoka-Nakai estendido. São apresentadas três aplicações
numéricas para testar e ilustrar as capacidades desta abordagem. Os resultados são confrontados com soluções de outros autores ou com dados experimentais.
Downloads
Referências
Antão, A., Vicente da Silva, M., Guerra, N., e Delgado, R. (2012). An upper bound-based solution
for the shape factors of bearing capacity of footings under drained conditions using a parallelized mixed f.e. formulation with quadratic velocity fields. Computers and Geotechnics, 41, pp. 23–35. https://doi.org/10.1016/j.compgeo.2011.11.003.
Boyd, S., Parikh, N., Chu, E., Peleato, B., e Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning, 3(1), pp. 1–122. http://dx.doi.org/10.1561/2200000016.
Caquot, A. e Kerisel, J. (1953). Sur le terme de surface dans le calcul des fondations en milieu pulverulent. Em Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 336–337, Zurich.
CEN (2004). EN 1997-1: Eurocode 7: Geotechnical Design – Part 1: General Rules. European
Committee for Standardization, Brussels, Belgium, 2nd ed. edição.
Green, G. E. e Bishop, A.W. (1969). A note on the drained strength of sand under generalized strain conditions. Géotechnique, 19(1), pp. 144–149. https://doi.org/10.1680/geot.1969.19.1.144.
Griffiths, D. V. e Huang, J. (2009). Observations on the extended matsuoka-nakai failure criterion.
International Journal for Numerical and Analytical Methods in Geomechanics, 33(17), pp.
–1905. https://doi.org/10.1002/nag.810.
Hanna, A. M. (1981a). Experimental study on footings in layered soil. Journal of the Geotechnical
Engineering Division, 107(GT8), pp. 1113–1126. https://doi.org/10.1061/AJGEB6.0001178.
Hanna, A. M. (1981b). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(GT7), pp. 915–927. https://doi.org/10.1061/AJGEB6.0001169.
Hansen, J. B. (1970). A Revised and Extended Formula for Bearing Capacity, vol. 28 de Bulletin of
The Danish Geotechnical Institute, pp. 5–11. Danish Geotechnical Institute.
Hjiaj, M., Lyamin, A., e Sloan, S. (2005). Numerical limit analysis solutions for the bearing capacity
factor Nγ . International Journal of Solids and Structures, 42(5-6), pp. 1681–1704.
https://doi.org/10.1016/j.ijsolstr.2004.08.002.
Kumar, J. e Samui, P. (2006). Stability determination for layered soil slopes using the upper bound
limit analysis. Geotechnical & Geological Engineering, 24(6), pp. 1803–1819.
https://doi.org/10.1007/s10706-006-7172-1.
Lade, P. V. e Duncan, J. M. (1975). Elastoplastic stress-strain theory for cohesionless soil. Journal
of the Geotechnical Engineering Division, 101(10), pp. 1037–1053.
https://doi.org/10.1061/AJGEB6.0000204.
Lade, P. V. e Musante, H. M. (1978). Three-dimensional behavior of remolded clay. Journal of
the Geotechnical Engineering Division, 104(2), pp. 193–209.
https://doi.org/10.1061/AJGEB6.0000581.
Lagioia, R. e Panteghini, A. (2017). Accounting for specific failure criteria in the slip-line method
for plane strain problems. Géotechnique Letters, 7(2), pp. 184–189.
https://doi.org/10.1680/jgele.17.00014.
Martin, C. (2005). Exact bearing capacity calculations using the method of characteristics. Proc.
th Int. Conf. of IACMAG Turin.
Matsuoka, H., Hoshikawa, T., e Ueno, K. (1990). A general failure criterion and stress-strain
relation for granular materials to metals. Soils and Foundations, 30(2), pp. 119–127.
https://doi.org/10.3208/sandf1972.30.2_119.
Matsuoka, H. e Nakai, T. (1974). Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. JSCE, 1974(232), pp. 59–70.
https://doi.org/10.2208/jscej1969.1974.232_59.
Matsuoka, H. e Nakai, T. (1985). Relatioship among Tresca, Mises, Mohr-Coulomb and Matsuoka-
Nakai failure criteria. Soils and Foundations, 25(4), pp. 123–128.
https://doi.org/10.3208/sandf1972.25.4_123.
Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian
Geotechnical Journal, 1(1), pp. 16–26. https://doi.org/10.1139/t63-003.
Meyerhof, G. G. e Hanna, A. M. (1978). Ultimate bearing capacity of foundations on layered soils
under inclined load. Canadian Geotechnical Journal, 15(4), pp. 565–572.
https://doi.org/10.1139/t78-060.
Potts, D. M. e Gens, A. (1984). The effect of the plastic potential in boundary value problems
involving plane strain deformation. International Journal for Numerical and Analytical Methods
in Geomechanics, 8(3), pp. 259–286. https://doi.org/10.1002/nag.1610080305.
Salgado, R. (2006). The engineering of foundations. McGraw-Hill Education (Europe).
Smith, C. C. (2005). Complete limiting stress solutions for the bearing capacity of strip footings on
a mohr-coulomb soil. Géotechnique, 55(8), pp. 607–612.
https://doi.org/10.1680/geot.2005.55.8.607.
Terzaghi, K. (1943). Theoretical soil mechanics. Wiley, New York.
https://doi.org/10.1002/9780470172766.
Vicente da Silva, M. e Antão, A. (2008). Upper bound limit analysis with a parallel element formulation. International Journal of Solids and Structures, 45(22-23), pp. 5788–5804.
https://doi.org/10.1016/j.ijsolstr.2008.06.012.
Vicente da Silva, M. e Antão, A. N. (2007). A non-linear programming method approach for upper
bound limit analysis. International Journal for Numerical Methods in Engineering, 72(10), pp.
–1218. https://doi.org/10.1002/nme.2061.
Vicente da Silva, M. e Antão, A. N. (2012). A novel augmented lagrangian-based formulation for
upper-bound limit analysis. International Journal For Numerical Methods in Engineering, 89(12),
pp. 1471–1496. https://doi.org/10.1002/nme.3294.
Vicente da Silva, M., Deusdado, N., e Antão, A. (2020). Lower and upper bound limit analysis via
the alternating direction method of multipliers. Computers and Geotechnics, 124, pp. 103571.