Limit Analysis using the extended Matsuoka-Nakai yield criterion under plane strain conditions

Authors

DOI:

https://doi.org/10.14195/2184-8394_157_2

Keywords:

limit analysis, Extended-Matsuoka-Nakai criterion, plane strain, alternating direction method of multipliers (ADMM)

Abstract

This paper investigates the implementation of the Extended-Matsuoka-Nakai yield criterion on Limit Analysis formulation under plane strain conditions. The current approach is based on a three-field mixed finite element model and the Alternating Direction Method of Multipliers optimization algorithm. For this purpose, an equivalence between the classical Mohr-Coulomb criterion and the Extended-Matsuoka-Nakai is established and explored. Three numerical applications are presented to test and to illustrate the capabilities of this approach. The results are confronted with other authors’ solutions or experimental data.

Downloads

Download data is not yet available.

References

Antão, A., Vicente da Silva, M., Guerra, N., e Delgado, R. (2012). An upper bound-based solution

for the shape factors of bearing capacity of footings under drained conditions using a parallelized mixed f.e. formulation with quadratic velocity fields. Computers and Geotechnics, 41, pp. 23–35. https://doi.org/10.1016/j.compgeo.2011.11.003.

Boyd, S., Parikh, N., Chu, E., Peleato, B., e Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in

Machine Learning, 3(1), pp. 1–122. http://dx.doi.org/10.1561/2200000016.

Caquot, A. e Kerisel, J. (1953). Sur le terme de surface dans le calcul des fondations en milieu pulverulent. Em Proceedings of the 3rd International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 336–337, Zurich.

CEN (2004). EN 1997-1: Eurocode 7: Geotechnical Design – Part 1: General Rules. European

Committee for Standardization, Brussels, Belgium, 2nd ed. edição.

Green, G. E. e Bishop, A.W. (1969). A note on the drained strength of sand under generalized strain conditions. Géotechnique, 19(1), pp. 144–149. https://doi.org/10.1680/geot.1969.19.1.144.

Griffiths, D. V. e Huang, J. (2009). Observations on the extended matsuoka-nakai failure criterion.

International Journal for Numerical and Analytical Methods in Geomechanics, 33(17), pp.

–1905. https://doi.org/10.1002/nag.810.

Hanna, A. M. (1981a). Experimental study on footings in layered soil. Journal of the Geotechnical

Engineering Division, 107(GT8), pp. 1113–1126. https://doi.org/10.1061/AJGEB6.0001178.

Hanna, A. M. (1981b). Foundations on strong sand overlying weak sand. Journal of the Geotechnical Engineering Division, 107(GT7), pp. 915–927. https://doi.org/10.1061/AJGEB6.0001169.

Hansen, J. B. (1970). A Revised and Extended Formula for Bearing Capacity, vol. 28 de Bulletin of

The Danish Geotechnical Institute, pp. 5–11. Danish Geotechnical Institute.

Hjiaj, M., Lyamin, A., e Sloan, S. (2005). Numerical limit analysis solutions for the bearing capacity

factor Nγ . International Journal of Solids and Structures, 42(5-6), pp. 1681–1704.

https://doi.org/10.1016/j.ijsolstr.2004.08.002.

Kumar, J. e Samui, P. (2006). Stability determination for layered soil slopes using the upper bound

limit analysis. Geotechnical & Geological Engineering, 24(6), pp. 1803–1819.

https://doi.org/10.1007/s10706-006-7172-1.

Lade, P. V. e Duncan, J. M. (1975). Elastoplastic stress-strain theory for cohesionless soil. Journal

of the Geotechnical Engineering Division, 101(10), pp. 1037–1053.

https://doi.org/10.1061/AJGEB6.0000204.

Lade, P. V. e Musante, H. M. (1978). Three-dimensional behavior of remolded clay. Journal of

the Geotechnical Engineering Division, 104(2), pp. 193–209.

https://doi.org/10.1061/AJGEB6.0000581.

Lagioia, R. e Panteghini, A. (2017). Accounting for specific failure criteria in the slip-line method

for plane strain problems. Géotechnique Letters, 7(2), pp. 184–189.

https://doi.org/10.1680/jgele.17.00014.

Martin, C. (2005). Exact bearing capacity calculations using the method of characteristics. Proc.

th Int. Conf. of IACMAG Turin.

Matsuoka, H., Hoshikawa, T., e Ueno, K. (1990). A general failure criterion and stress-strain

relation for granular materials to metals. Soils and Foundations, 30(2), pp. 119–127.

https://doi.org/10.3208/sandf1972.30.2_119.

Matsuoka, H. e Nakai, T. (1974). Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. JSCE, 1974(232), pp. 59–70.

https://doi.org/10.2208/jscej1969.1974.232_59.

Matsuoka, H. e Nakai, T. (1985). Relatioship among Tresca, Mises, Mohr-Coulomb and Matsuoka-

Nakai failure criteria. Soils and Foundations, 25(4), pp. 123–128.

https://doi.org/10.3208/sandf1972.25.4_123.

Meyerhof, G. G. (1963). Some recent research on the bearing capacity of foundations. Canadian

Geotechnical Journal, 1(1), pp. 16–26. https://doi.org/10.1139/t63-003.

Meyerhof, G. G. e Hanna, A. M. (1978). Ultimate bearing capacity of foundations on layered soils

under inclined load. Canadian Geotechnical Journal, 15(4), pp. 565–572.

https://doi.org/10.1139/t78-060.

Potts, D. M. e Gens, A. (1984). The effect of the plastic potential in boundary value problems

involving plane strain deformation. International Journal for Numerical and Analytical Methods

in Geomechanics, 8(3), pp. 259–286. https://doi.org/10.1002/nag.1610080305.

Salgado, R. (2006). The engineering of foundations. McGraw-Hill Education (Europe).

Smith, C. C. (2005). Complete limiting stress solutions for the bearing capacity of strip footings on

a mohr-coulomb soil. Géotechnique, 55(8), pp. 607–612.

https://doi.org/10.1680/geot.2005.55.8.607.

Terzaghi, K. (1943). Theoretical soil mechanics. Wiley, New York.

https://doi.org/10.1002/9780470172766.

Vicente da Silva, M. e Antão, A. (2008). Upper bound limit analysis with a parallel element formulation. International Journal of Solids and Structures, 45(22-23), pp. 5788–5804.

https://doi.org/10.1016/j.ijsolstr.2008.06.012.

Vicente da Silva, M. e Antão, A. N. (2007). A non-linear programming method approach for upper

bound limit analysis. International Journal for Numerical Methods in Engineering, 72(10), pp.

–1218. https://doi.org/10.1002/nme.2061.

Vicente da Silva, M. e Antão, A. N. (2012). A novel augmented lagrangian-based formulation for

upper-bound limit analysis. International Journal For Numerical Methods in Engineering, 89(12),

pp. 1471–1496. https://doi.org/10.1002/nme.3294.

Vicente da Silva, M., Deusdado, N., e Antão, A. (2020). Lower and upper bound limit analysis via

the alternating direction method of multipliers. Computers and Geotechnics, 124, pp. 103571.

https://doi.org/10.1016/j.compgeo.2020.103571.

Published

2023-03-29

Issue

Section

Articles