Caracterización resistente de los residuos y de las interfaces entre geosintéticos utilizados en vertederos
DOI:
https://doi.org/10.14195/2184-8394_164_5Palavras-chave:
vertederos, geosintéticos, residuosResumo
La estabilidad de los taludes que conforman un vertedero es un tema muy significativo a tener en cuenta. La rotura de un vertedero supone una incidencia muy importante que afecta a su explotación, al medio ambiente, generando incluso víctimas. Sin embargo, hay escasas referencias en la bibliografía existente y en la normativa que aludan a cómo abordar el análisis de su estabilidad. Excluyendo la rotura por falta de capacidad portante del terreno de apoyo, las inestabilidades pueden afectar a la masa de residuos o pueden producirse a través de los contactos entre los diferentes geosintéticos que conforman el sistema de impermeabilización inferior y sellado, así como entre estos y los residuos o el terreno natural. El artículo recoge diversas investigaciones realizadas por el Grupo de Geotecnia de la Universidad de Cantabria a lo largo de más de tres décadas, mostrando diferentes métodos para obtener los valores de los parámetros resistentes de los residuos y de las interfaces, presentando ensayos y resultados de laboratorio y campo realizados. Se realizan también comparaciones con otros resultados obtenidos de la bibliografía.
Downloads
Referências
Abreu, A. E. S.; Vilar, O. M. (2017). Influence of composition and degradation on the shear strength of municipal solid waste. Waste Management, 68, 263-274. https://doi.org/10.1016/j.wasman.2017.05.038
Athanasopoulos, G. A. (2008). Laboratory Testing of Municipal Solid Waste. En Geotechnical Characterization, Field Measurement, and Laboratory Testing of Municipal Solid Waste, pp. 195-205. https://doi.org/10.1061/41146(395)7
Bareither, C. A. ; Benson, C. H. ; Edil, T. B. (2012). Effects of Waste Composition and Decomposition on the Shear Strength of Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, 138 (10), pp. 1161-1174. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000702
Bareither, C. A.; Benson, C. H.; Rohlf, E. M.; Scalia, J. (2020). Hydraulic and mechanical behavior of municipal solid waste and high-moisture waste mixtures. Waste Management, 105, pp. 540-549. https://doi.org/10.1016/j.wasman.2020.02.030
Bergado, D. T.; Ramana, G. V.; Sia, H. I.; Varun. (2006). Evaluation of interface shear strength of composite liner system and stability analysis for a landfill lining system in Thailand. Geotextiles and Geomembranes, 24 (6), pp. 371-393. https://doi.org/10.1016/j.geotexmem.2006.04.001
Bhandari, A. R.; Powrie, W. (2013). Behavior of an MBT waste in monotonic triaxial shear tests. Waste Management, 33 (4), pp. 881-891. https://doi.org/10.1016/j.wasman.2012.11.009
Bray, J. D.; Zekkos, D.; Kavazanjian, E.; Athanasopoulos, G. A.; Riemer, M. F. (2009). Shear Strength of Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, 135 (6), pp. 709-722. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000063
Caicedo, B.; Giraldo, E.; Yamin, L.; Soler, N. (2002). The landslide of Dona Juana Landfill in Bogota. A case study. Fourth international congress on environmental geotechnics (4th ICEG), Río de Janeiro, Brasil.
Cañizal, J.; Lapeña, P.; Castro, J., da Costa, A.; Sagaseta, C. (2011). Determination of shear strength of MSW. Field tests vs. Laboratory tests. Fourth International Workshop «Hydro-Physico-Mechanics of Landfills» (HPM4), Santander, Spain.
Chang, M.-H.; Mitchell, J.; Seed, R. (1999). Model Studies of the 1988 Kettleman Hills Landfill Slope Failure. Geotechnical Testing Journal, 22 (1), pp. 61-66. https://doi.org/10.1520/GTJ11316J
Chugh, A. K.; Stark, T. D.; DeJong, K. A. (2007). Reanalysis of a municipal landfill slope failure near Cincinnati, Ohio, USA. Canadian Geotechnical Journal, 44 (1), pp. 33-53. https://doi.org/10.1139/t06-089
Consejo Europeo. (2018). Directiva 1999/31/EC del Consejo de 26 de abril de 1999 relativa al vertido de residuos.
Cox, J. T. (2013). Effects of Waste Placement Practices on the Engineering Response of Municipal Solid Waste. Tesis de Máster, California Polytechnic State University. https://doi.org/10.15368/theses.2013.217
Di Lonardo, M. C.; Lombardi, F.; Gavasci, R. (2012). Characterization of MBT plants input and outputs: A review. Reviews in Environmental Science and Bio/Technology, 11 (4), pp. 353-363. https://doi.org/10.1007/s11157-012-9299-2
Dirección General de Calidad y Evaluación Ambiental. (2024). Recomendaciones para el establecimiento de criterios de ubicación, diseño y programas de vigilancia en vertederos (v 1.1). Ministerio para la Transición Ecológica y el Reto Demográfico.
Dixon, N.; Jones, D. R. V. (2005). Engineering properties of municipal solid waste. Geotextiles and Geomembranes, 23 (3), pp. 205-233. https://doi.org/10.1016/j.geotexmem.2004.11.002
Dixon, N.; Whittle, R. W.; Jones, D. R. V.; Ng’ambi, S. (2006). Pressuremeter tests in municipal solid waste: Measurement of shear stiffness. Géotechnique, 56 (3), pp. 211-222. https://doi.org/10.1680/geot.2006.56.3.211
Eid, H. T.; Stark, T. D.; Douglas, E. W.; Sherry, P. E. (2000). Municipal Solid Waste Slope Failure. I: Waste and Foundation Soil Properties. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), pp. 397-407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397)
Espinace, R.; Farfán, J. (2016). Desafíos en la estabilidad de nuevos rellenos sanitarios. IX Congreso Chileno de Ingeniería Geotécnica, Valdivia, Chile.
Estaire, J.; Pardo de Santayana, F.; Olivenza, G. (2014). Cálculo de la estabilidad de un vertedero impermeabilizado con geosintéticos. Geotecnia, 131, pp. 5-27. https://doi.org/10.24849/j.geot.2014.131.02
Feng, S.-J.; Gao, K.-W.; Chen, Y.-X.; Li, Y.; Zhang, L. M.; Chen, H. X. (2017). Geotechnical properties of municipal solid waste at Laogang Landfill, China. Special Thematic Issue: Sanitary Landfilling, 63, pp. 354-365. https://doi.org/10.1016/j.wasman.2016.09.016
Giroud, J. P.; Darrasse, J.; Bachus, R. C. (1993). Hyperbolic expression for soil-geosynthetic or geosynthetic-geosynthetic interface shear strength. Geotextiles and Geomembranes, 12 (3), pp. 275-286. https://doi.org/10.1016/0266-1144(93)90030-R
Gomes, C.; Lopes, M. L.; Oliveira, P. J. V. (2013). Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. Journal of the Air y Waste Management Association, 63 (11), pp. 1352-1368. https://doi.org/10.1080/10962247.2013.813876
Gotteland, P.; Gourc, J. P.; Aboura, A.; Thomas, S. (2000). On Site Determination Of Geomechanical Characteristics of Waste. ISRM-IS-2000-150.
Grisolia, M.; Napoleoni, Q. (1996). Geotechnical characterization of municipal solid waste: Choice of design parameters. Proceedings of the 2nd International Congress on Environmental Geotechnics, II, pp. 641-646.
Güler, E.; Avci, C. B. (1995). Evaluation of the incident at the Ümraniye landfill, Istambul. And proposed remedial investigations. Waste Disposal by Landfill, pp. 637-642.
Hebeler, G. L.; Frost, J. D.; Myers, A. T. (2005). Quantifying hook and loop interaction in textured geomembrane–geotextile systems. Geotextiles and Geomembranes, 23 (1), pp. 77-105. https://doi.org/10.1016/j.geotexmem.2004.06.002
Houston, W. N.; Houston, S.; Liu, J. W.; Elsayed, A.; Sanders, C. O. (1995). In-situ testing methods for dynamic properties of MSW landfills. Geotechnical Special Publication, pp. 73-82. https://asu.pure.elsevier.com/en/publications/in-situ-testing-methods-for-dynamic-properties-of-msw-landfills
Huvaj-Sarihan, N.; Stark, T. D. (2008). Back-Analyses of Landfifill Slope Failures. Sixth International Conference on Case Histories in Geotechnical Engineering, Arlington, Virginia, U.S.A.
Jafari, N. H. ; Stark, T. D. ; Merry, S. (2013). The July 10 2000 Payatas Landfill Slope Failure. International Journal of Geoengineering Case Histories, 2 (3), pp. 208-228. https://doi.org/10.4417/IJGCH-02-03-03
JICA Survey Team (2018): The final report on the investigation of the damage caused by the collapse of a garbage mound at the disposal site in Maputo municipality. Global Environment Department, Japan International Cooperation Agency, Tokyo.
Jones, D. R. V.; Dixon, N. (1998). Shear strength properties of geomembrane/geotextile interfaces. Geotextiles and Geomembranes, 16 (1), pp. 45-71. https://doi.org/10.1016/S0266-1144(97)10022-X
Kamon, M.; Mariappan, S.; Katsumi, T.; Inui, T.; Akai, T. (2009). Large-Scale Shear Tests on Interface Shear Performance of Landfill Liner Systems. En G. Li, Y. Chen, y X. Tang (Eds.), Geosynthetics in Civil and Environmental Engineering, Springer Berlin Heidelberg, pp. 473-478.
Karimpour-Fard, M.; Machado, S. L.; Shariatmadari, N.; Noorzad, A. (2011). A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Management, 31 (8), pp. 1807-1819. https://doi.org/10.1016/j.wasman.2011.03.011
Kavazanjian, E. (2003). Evaluation of MSW properties using field measurements. GRI-17: Hot Topics in Geosynthetics, IV, pp. 74-113.
Kavazanjian, E.; Hendron, D.; Corcoran, G. T. (2001). Strength and Stability of Bioreactor Landfills. Proceedings of the 6th Annual Landfill Symposium, Solid Waste Association of North America, pp. 63-72.
Kavazanjian, E.; Matasovic, N.; Bonaparte, R.; Schmertmann, G. R. (1995). Evaluation of MSW properties for seismic analysis. Geotechnical Special Publication, pp. 1126-1141. http://www.scopus.com/inward/record.url?scp=0029184786ypartnerID=8YFLogxK
Koerner, R. M. ; Martin, J. P. ; Koerner, G. R. (1986). Shear strength parameters between geomembranes and cohesive soils. Geotextiles and Geomembranes, 4 (1), pp. 21-30. https://doi.org/10.1016/0266-1144(86)90034-8
Kölsch, F. (1995). Material values for some mechanical properties of domestic waste. Proceedings of the Fifth International Landfill Symposium, II, pp. 711-726.
Lakshmikanthan, P.; Sughosh, P.; Sivakumar Babu, G. L. (2018). Studies on Characterization of Mechanically Biologically Treated Waste from Bangalore City. Indian Geotechnical Journal, 48 (2), pp. 293-304. https://doi.org/10.1007/s40098-018-0296-4
Landva, A.; Clark, J. (1990). Geotechnics of Waste Fill. En A. Landva y G. Knowles (Eds.), Geotechnics of Waste Fills – Theory and Practice, pp. 86-103. ASTM International. https://doi.org/10.1520/STP25301S
Lapeña, P.; Cañizal, J.; Castro, J.; da Costa, A.; Sagaseta, C. (2013). Mechanical characterization of MSW using the pressuremeter. 6th International sympsosium on pressuremeters (ISP6-PRESSIO), Paris, France.
Lapeña, P.; Cañizal, J.; Martínez-Parra, Á.; Devicenci, M. (2014). Mechanical characterization of MSW using CPTu tests. 3rd International Symposium on Cone Penetration Testing (CPT14), Las Vegas, USA.
Lapeña-Mañero, P.; Cañizal, J.; Palma, J. H.; Sagaseta, C. (2022). Análisis del deslizamiento del talud del vertedero de residuos sólidos urbanos de Santa Marta (Chile). X Simposio Nacional sobre Taludes y Laderas Inestables, pp. 683-694.
Lapeña-Mañero, P.; García-Casuso, C.; Cañizal, J.; Sagaseta, C. (2022). Shear strength characterization of fresh MBT and MSWI wastes from a Spanish treatment facility. Waste Management, 154, pp. 15-26. https://doi.org/10.1016/j.wasman.2022.08.026
Lavigne, F.; Wassmer, P.; Gomez, C.; Davies, T. A.; Sri Hadmoko, D.; Iskandarsyah, T. Y. W. M.; Gaillard, J.; Fort, M.; Texier, P.; Boun Heng, M.; Pratomo, I. (2014). The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenvironmental Disasters, 1 (1), 10. https://doi.org/10.1186/s40677-014-0010-5
Machado, S. L.; Carvalho, M. F.; Vilar, O. M. (2002). Constitutive Model for Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, 128 (11), pp. 940-951. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940)
Martínez Bacas, B. (2009). Comportamiento resistente al deslizamiento de geosintéticos. Tesis doctoral, Universidad de Cantabria. http://hdl.handle.net/10902/1219
Martínez Bacas, B.; Cañizal, J.; Konietzky, H. (2015a). Frictional behaviour of three critical geosynthetic interfaces. Geosynthetics International, 22 (5), pp. 355-365. https://doi.org/10.1680/jgein.15.00017
Martínez Bacas, B. ; Cañizal, J. ; Konietzky, H. (2015b). Shear strength behavior of geotextile/geomembrane interfaces. Journal of Rock Mechanics and Geotechnical Engineering, 7 (6), pp. 638-645. https://doi.org/10.1016/j.jrmge.2015.08.001
Martínez Bacas, B.; Konietzky, H.; Berini, J. C.; Sagaseta, C. (2011). A new constitutive model for textured geomembrane/geotextile interfaces. Geotextiles and Geomembranes, 29 (2), pp. 137-148. https://doi.org/10.1016/j.geotexmem.2010.10.014
Matasovic, N.; El-Sherbiny, R.; Kavazanjian, E. (2008). In-Situ Measurements of MSW Properties. Proceedings of the 2008 International Symposium on Waste Mechanics, pp. 195-205.
Matasovic, N.; Kavazanjian, E.; De, A.; Dunn, J. (2006). CPT-based seismic stability assessment of a hazardous waste site. Soil Dynamics and Earthquake Engineering, 26 (2), Article 2. https://doi.org/10.1016/j.soildyn.2005.02.014
Mazzucato, N.; Simonini, P.; Colombo, P. (1999). Analysis of block slide in a MSW landfill. Proceedings of the 7th International Waste Management and Landfill symposium.
McCartney, J. S.; Zornberg, J. G.; Swan, R. H. (2009). Analysis of a Large Database of GCL-Geomembrane Interface Shear Strength Results. Journal of Geotechnical and Geoenvironmental Engineering, 135 (2), pp. 209-223. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(209)
Merry, S. M.; Kavazanjian, E.; Fritz, W. U. (2005). Reconnaissance of the July 10, 2000, Payatas Landfill Failure. Journal of Performance of Constructed Facilities, 19 (2), pp. 100-107. https://doi.org/10.1061/(ASCE)0887-3828(2005)19:2(100)
Ministerio de Medio Ambiente. (2002). Real Decreto 1481/2001, de 27 de diciembre, por el que se regula la eliminación de residuos mediante depósito en vertedero.
Ministerio para la Transición Ecológica y el Reto Demográfico. (2020). Real Decreto 646/2020, de 7 de julio, por el que se regula la eliminación de residuos mediante depósito en vertedero.
Mitchell, J. K.; Chang, M.; Seed, R. B. (1993). The Kettleman Hills Landfifill Failure: A Retrospective View of the Failure Investigations and Lessons Learned. Third International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri (U.S.A.).
Mitchell, J. K.; Seed, R. B.; Seed, H. B. (1990). Kettleman Hills Waste Landfill Slope Failure. I: Liner‐System Properties. Journal of Geotechnical Engineering, 116 (4), pp. 647-668. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(647)
Ofrikhter, V.; Ofrikhter, I.; Bezgodov, M. (2018). Results of field testing of municipal solid waste by combination of CPTU and MASW. Data in Brief, 19, pp. 883-889. https://doi.org/10.1016/j.dib.2018.05.109
Palma, J. (1995). Comportamiento geotécnico de vertederos controlados de residuos sólidos urbanos. Tesis doctoral, Universidad de Cantabria.
Pardo de Santayana, F., y Veiga Pinto, A. A. (1998). The Beirolas Landfill Eastern Expansion landslide. Third International Congress on Environmental Geotechnics, pp. 7-11.
Peng, R.; Hou, Y.; Zhan, L.; Yao, Y. (2016). Back-Analyses of Landfill Instability Induced by High Water Level: Case Study of Shenzhen Landfill. International Journal of Environmental Research and Public Health, 13 (1). https://doi.org/10.3390/ijerph13010126
Pulat, H. F.; Yukselen-Aksoy, Y. (2020). Compressibility and shear strength behaviour of fresh and aged municipal solid wastes. Environmental Geotechnics, pp. 1-9. https://doi.org/10.1680/jenge.18.00019
Ramaiah, B. J.; Ramana, G. V.; Datta, M. (2017). Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Management, 68, pp. 275-291. https://doi.org/10.1016/j.wasman.2017.05.055
Ramaiah, J.; Gunturi, R. (2014). CPTu at a municipal solid waste site in Delhi, India. 3rd International Symposium on Cone Penetration Testing, Las Vegas, Nevada, USA. https://doi.org/10.13140/RG.2.1.4718.6966
Reddy, K. R.; Hettiarachchi, H.; Parakalla, N. S.; Gangathulasi, J.; Bogner, J. E. (2009). Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Management, 29 (2), pp. 952-959. https://doi.org/10.1016/j.wasman.2008.05.011
Richardson, G. ; Reynolds, D. (1991). Geosynthetic Considerations in a Landfill on Compressible Clays. Proceedings of Geosynthetics ’91, Vol. 2.
Robertson, P. K. (2010). Soil behaviour type from the CPT: an update. 2nd International Symposium on Cone Penetration Testing, Huntington Beach, CA, USA. https://api.semanticscholar.org/CorpusID:15373054
Sánchez-Alciturri, J. M.; Palma, J.; Sagaseta, C.; Cañizal, J. (1993). Mechanical properties of wastes in a sanitary landfill. Waste Disposal by Landfill, pp. 357-364.
Schmertmann, J. H. (1978). Guidelines for Cone Penetration Test, Performance and Design (FHWA-TS-78-209). Federal Highway Administration.
Seed, R. B.; Mitchell, J. K.; Seed, H. B. (1990). Kettleman Hills Waste Landfill Slope Failure. II: Stability Analyses. Journal of Geotechnical Engineering, 116 (4), pp. 669-690. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(669)
Seo, M. W.; Park, J. B.; Park, I. J. (2007). Evaluation of Interface Shear Strength between Geosynthetics Under Wet Condition. Soils and Foundations, 47 (5), pp. 845-856. https://doi.org/10.3208/sandf.47.845
Siddiqui, A. A.; Powrie, W.; Richards, D. J. (2013). Settlement Characteristics of Mechanically Biologically Treated Wastes. Journal of Geotechnical and Geoenvironmental Engineering, 139 (10), pp. 1676-1689. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000918
Sivakumar Babu, G. L.; Lakshmikanthan, P.; Santhosh, L. G. (2015). Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore. Waste Management, 39, pp. 63-70. https://doi.org/10.1016/j.wasman.2015.02.013
Stark, T. D.; Eid, H. T.; Evans, W. D.; Sherry, P. E. (2000). Municipal Solid Waste Slope Failure II: Stability Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), pp. 408-419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408)
Stark, T. D.; Huvaj-Sarihan, N.; Li, G. (2008). Shear strength of municipal solid waste for stability analyses. Environmental Geology, 57 (8), pp. 1911-1923. https://doi.org/10.1007/s00254-008-1480-0
Stark, T. D.; Poeppel, A. R. P. A. (1994). Landfill Liner Interface Strengths from Torsional‐Ring‐Shear Tests. Journal of Geotechnical Engineering, 120 (3), pp. 597-615. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(597)
Subdirección General de Calidad Ambiental. (2003). Desarrollo técnico del R.D. 1481/2001 relativo a las instlaciones de vertido de residuos. Documento de trabajo (Rv. 07). Ministerio de Medio Ambiente.
Xu, Q.; Peng, D.; Li, W.; Dong, X.; Hu, W.; Tang, M.; Liu, F. (2017). The catastrophic landfill flowslide at Hongao dumpsite on December 20 2015 in Shenzhen, China. Natural Hazards and Earth System Sciences Discussions, 17, pp. 277-290. https://doi.org/10.5194/nhess-17-277-2017
Zekkos, D.; Bray, J. D.; Kavazanjian, E.; Matasovic, N.; Rathje, E. M.; Riemer, M. F.; Stokoe, K. H. (2006). Unit Weight of Municipal Solid Waste. Journal of Geotechnical and Geoenvironmental Engineering, 132 (10), pp. 1250-1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250)
Zekkos, D.; Bray, J. D.; Riemer, M. F.; Kavazanjian, E.; Athanasopoulos, G. A. (2007). Response of municipal solid-waste from Tri-Cities landfill in triaxial compression. Proceedings of the eleventh International Waste Management and Landfill Symposium.
Zhan, T. L. T.; Chen, Y. M.; Ling, W. A. (2008). Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97 (3-4), Article 3-4. https://doi.org/10.1016/j.enggeo.2007.11.006
Zhao, Y. R.; Xie, Q.; Wang, G. L.; Zhang, Y. J.; Zhang, Y. X.; Su, W. (2014). A study of shear strength properties of municipal solid waste in Chongqing landfill, China. Environmental Science and Pollution Research, 21 (22), pp. 12605-12615. https://doi.org/10.1007/s11356-014-3183-2