Modelling of piles in finite element (FE) method

Authors

  • José Luis Justo Departamento de Estructuras de Edificación e Ingeniería del Terreno, Universidade de Sevilla, Spain
  • Manuel Vázquez-Boza Departamento de Estructuras de Edificación e Ingeniería del Terreno, Universidade de Sevilla, Spain
  • Enrique Justo Departamento de Estructuras de Edificación e Ingeniería del Terreno, Universidade de Sevilla, Spain

DOI:

https://doi.org/10.24849/j.geot.2019.146.03

Keywords:

Volume pile, embedded pile, mesh dependency

Abstract

This paper presents a detailed description of the relative advantages and disadvantages of volume piles and embedded piles. The mesh dependency is more significant in an embedded pile. When a large number of piles have to be considered, the number of elements in the system is significantly reduced using embedded piles. The results obtained with both models were compared with the data obtained from full-scale loading tests in a case study of a driven pile followed by a micropilote, subjected to compression, tension and shear (case 1), and with the results of an elastoplastic analysis carried out with the well-established integral equation method (case 2). In case 1, the results of the pile subject to compression revealed that the volume pile can reproduce the step produced by a change in the section of the pile, something not possible with an embedded pile. For tension tests or lateral load, the embedded pile reproduces better the displacement measured in the head of the pile or the efforts along the shaft. The conclusions obtained refer mainly to the types of numerical modelling described in the text of the paper and to the programs in which they apply.

Downloads

Download data is not yet available.

References

Brinkgreve, R.B.J.; Swolfs, W.M. (2007). Plaxis 3D Foundation.Version 2. Plaxis BV, Delft, Holanda.

Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M. (2015). PLAXIS 3D Anniversary Edition. Plaxis BV, Delft, Holanda.

Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M. (2018). PLAXIS 2018. Plaxis BV, Delft, Holanda.

Chow, H.; Small, J. (2008). Case histories for piled rafts. Proceedings BGA International Conference on Foundations. Dundee, pp. 451-62.

Documento básico SE-C (2006). Seguridad estructural. Cimientos. Real decreto 314/2006 de 17 de marzo por el que se aprueba el Código Técnico de la Edificación (BOE 28 de marzo de 2006).

Engin, H.K.; Septanika, E.G.; Brinkgreve, R.B.J. (2007). Improved embedded beam elements for the modelling of piles. En: Pietruszczak, Pande, editores. Proceedings of the 10th international symposium on numerical models in geomechanics (NUMOG). Rhodes, Greece, London: Taylor ¬ Francis Group, p. 475-80.

Jiménez Salas, J.A.; Justo, J.L.; Serrano, A. (1981). Geotecnia y Cimientos II. Mecánica del suelo y de las Rocas. Dossat, Madrid.

Justo, J.L.; Arcos, J.L.; Justo, E.; Gil, R.; Vázquez-Boza, M.; Martín, F.; Durand, P. (2016). A hollow pile extended with a micro-pile: tests and modelling. Proceedings Institution Civil Engineers-Geotechnical Engineering; 43:174-185.

Kondner, R. L.; Zelasko, J. S. (1963). A hyperbolic stress–strain formulation of sands. Proceedings of the 2nd Pan American Conference on Soil Mechanics and Foundation Engineering., Brazilian Association of Soil Mechanics, Sao Paulo, Brazil, pp. 289–324.

Kratos (2012). Página web, noviembre de 2012. http://www.cimne.com/kratos/.

Ninic´, J.; Stascheit. J.; Meschke., G. (2014). Beam–solid contact formulation for finite element analysis of pile–soil interaction with arbitrary discretization. International Journal of Numerical and Analitical Methods in Geomechanics, 38, pp.1453–1476.

Poulos, H.G.; Davis, E.H. (1968). The settlement behaviour of single axially loaded incompressible piles and piers. Géotechnique; 18, Nº 3, pp. 351-71.

Poulos, H.G.; Davis, E.H. (1980). Pile Foundation Analysis and Design. John Wiley and Sons, NY.

Randolph, M.F. (1981). The response of flexible piles to lateral loading. Geotechnique; 31, Nº 2, pp. 247-259.

Reese, L.C.; Welch, R.C. (1975). Lateral Loading of deep foundations in stiff clay. Journal of the Geotechnical Engineering Division, ASCE, 101, Nº 7, 633-649.

Sadek, M.; Sharour, I. (2004). A three dimensional embedded beam element for reinforced geomaterials. International Journal of Numerical and Analytical Methods in Geomechanics, 28, pp. 931-946.

Shanz, T.; Vermeer, P.A.; Bonnier, P.G. (1999). The hardening-soil model: formulation and verification. En: Brinkgreve, editor. Beyond 2000 in Computational Geotechnics: Ten Years of PLAXIS International. Balkema, Rotterdam, The Netherlands, pp. 281-290.

Tschuchnigg, F.; Schweiger, H.F. (2013). Comparison of deep foundation systems using 3D finite element analysis employing different modelling techniques. Geotechnical Engineering. Journal of the SEAGS and AGSSEA, 44, Nº 3, pp. 40-46.

Tschuchnigg, F.; Schweiger, H.F. (2015). The embedded pile concept-Verification of an efficient tool for modelling complex deep foundations. Computers and Geotechnics, 63, pp. 244-254.

Turello, D.F.; Pinto, F.; Sánchez, P.J. (2016). Embedded beam element with interaction surface for lateral loading of piles. International Journal of Numerical and Analytical Methods in Geomechanics, 40: pp. 568-582.

Turello, D.F.; Pinto, F.; Sánchez, P.J. (2017). Three dimensional elasto-plastic interface for embedded beam elements with interaction surface for the analysis of lateral loading of piles. International Journal of Numerical and Analytical Methods in Geomechanics, 41, Nº 6, pp. 859-879.

Turello D.F.; Pinto, F.; Sánchez, P.J. (2019). Analysis of lateral loading of pile groups using embedded beam elements with interaction surface International Journal of Numerical and Analytical Methods in Geomechanics, 43, Nº 1, pp. 272-292.

Published

2019-07-05

Issue

Section

Articles