Intervenience of reinforcement in railway ballast with load of high traffic

Authors

  • Luiz Gustavo Paulo Oran Divisão de Engenharia Civil, ITA - Instituto Tecnológico de Aeronáutica, Brasil
  • Delma Mattos Vidal Divisão de Engenharia Civil, ITA - Instituto Tecnológico de Aeronáutica, Brasil
  • José Souza Romero Sub-divisão de Ensaios Estruturais, IAE - ASA E - CTA, São José dos Campos, Brasil
  • Kledermon Garcia Sub-divisão de Ensaios Estruturais, IAE - ASA E - CTA, São José dos Campos, Brasil
  • Elizeu Nascimento Filho Sub-divisão de Ensaios Estruturais, IAE - ASA E - CTA, São José dos Campos, Brasil

DOI:

https://doi.org/10.24849/j.geot.2019.145.03

Keywords:

Reinforced ballast with geogrid, cyclic load, hydraulic actuator

Abstract

The ballasts constituent of the superstructure of railways, when submitted to cyclic loads of high intensity and frequency, suffer rapid wear in its supporting structure. The dismantling and levelling of ballasts demand large volumes per kilometer due to their degradation. Its minimal shoulders and height of construction define contours of sections with wide gravel bases. Because of this, particulate wear and its maintenance costs inflate the railroad budget. It was chosen to walk here on an investigative itinerary whose paradigm has its core in the concept of confinement and its effects on the Resilience Module of the ballast. The research remained on the practical effects of geogrid reinforcements applied within the ballast body and not at the interface with the underlying layer. In this work, the proposed goal of raising directional parameters to guide reinforcement performance tests and to better understand the causalities arising from geogrids specific properties such as mesh opening and stiffness of the elements, as well as correlating the position quotation effect reinforcement and its effects onto the degree of confinement generated.

Downloads

Download data is not yet available.

References

ABNT-NBR NM 26 (2001). Agregados - Amostragem. Associação Brasileira de Normas Técnicas (ABNT). Rio de Janeiro, Brasil.

ABNT-NBR 5564 (1991). Via Férrea - Lastro Padrão. Associação Brasileira de Normas Técnicas (ABNT). Rio de Janeiro, Brasil.

ABNT-NBR 13.370 (2017). Não tecido - Terminologia. Associação Brasileira de Normas Técnicas (ABNT). Rio de Janeiro, Brasil.

ASTM D6637 (2016). Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-rib Tensile Method, West Conshohocken, PA.

Cook, J.; Horvat, F. (2014). Assessment of Particle of confinement within a mechanically stabilized layer. 10th International Conference on Geosynthetics. Berlin.

DNIT-ISF-212 (2015). Projeto de Superestrutura de Via Permanente - Lastro e Sublastro. Instrução de Serviço Ferroviário, Ministério dos Transportes, Departamento Nacional de Infraestrutur de Transportes, Brasil.

EN 13450 (2002). Aggregates for Railway Ballast. European Standard - European Committee for Standardization, Brussels.

Horvat, F.; Klompmaker, J. (2014). Investigation of confinement effect by using the multi-level shear box test. 10th International Conference on Geosynthetics, ICG 2014.

Indraratna, B.; Nimbalkar, S. (2013). Stress-Strain Degradation Response of Railway Ballast Stabilized with Geosynthetics. Journal of Geotechnical and Geoenvironmental Engineering, v. 139, n. 5, p. 684–700.

Indraratna, B.; Salim, W. (2005). Mechanics of Ballasted Rail Tracks: a Geotechnical Perspective. Taylor & Francis Group plc. Londres, 248 pp.

Indraratna, B.; Salim, W.; Rujikiatkamjorn, C. (2011). Advanced Rail Geotechnology - Ballasted Track. Wollongong City: CRC Press.

Indraratna, B.; Thakur, P.; Vinod, J. (2010). Experimental and Numerical Study of Railway Ballast Behavior under Cyclic Loading. International Journal of Geomechanics, Vol. 10, No. 4, pp 136-144.

Ionescu, D.; Indraratna, B.; Christie, H. D. (1998). Behaviour of railway ballast under dynamic loads. Proc. 13th Southeast Asian Geotechnical Conference, Taipei, pp. 69–74.

Lichtberger, B. (2005). Track Compendium. Formation, Permanent Way, Maintenance, Economics. EURAILPRESS.

Magalhães, P. C. B.; Duval Filho, E.; Silva, M. W P. (2009). Via Permanente - Módulo VIII. São Luís: VALER - Educação VALE.

Matos, J. C. L.; Branco, V. H. L.; Oliveira, D. R. C. (2015). Structural assessment of a RC Bridge over Sororó river along the Carajás railway Avaliação estrutural da ponte sobre o rio Sororó na ferrovia Carajás. v. 8, n. 2, p. 140–151.

McDowell, G. R.; Harireche, O.; Konietzky, H.; Brown, S. F.; Thom, N. H. (2006). Discrete element modelling of geogrid-reinforced aggregates. In: Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, v. 159, n. 1, p. 35–48.

Merheb, A. H. M. (2014). Análise Mecânica do Lastro Ferroviário por Meio de Ensaios Triaxiais Cíclicos. Dissertação de Mestrado. Escola Politécnica da Universidade de São Paulo.

Qian, Y.; Tutumluer, E.; Hashash, Y. M. A. Ghaboussi, J. (2015). Effects of Ballast Degradation on Permanent Deformation Behaviour from Large-Scale Triaxial Tests. 2014 Joint Rail Conference, p. 1–5.

Ribeiro, F. S.; Bernucci, L. B.; da Costa, R. C.; de Moura, Edson. (2014). Análise do Custo do Ciclo de Vida do Lastro Ferroviário na Estrada de Ferro Vitória-Minas. [s.d.]. XXVIII ANPET. Selig, E. T.; Waters, J. M. (1994). Track Geotechnology and Substructure Management. Thomas Telford, London.

Vizcarra, G. O. C. (2017). Efeito da Granulometria no Comportamento Mecânico de Lastro Ferroviário. Tese de Doutorado PUC-RIO.

Published

2019-10-15

Issue

Section

Articles