Soil thermal behaviour: Characterization by the Hot Wire Method and numerical application

Authors

  • Henrique Lopes Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Portugal. https://orcid.org/0000-0003-1744-1454
  • Ana Vieira Laboratório Nacional de Engenharia Civil, Portugal
  • Sofia Soares Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Beja, Portugal.

DOI:

https://doi.org/10.24849/j.geot.2019.145.04

Keywords:

Soil thermal characterization, Hot Wire Method, numerical modelling

Abstract

The rising concern revealed by society in the last years, regarding the energetic sustainability of the planet, has become the main driver for the development of new techniques to explore energy that contribute to a decrease in greenhouse gases emission. The Ground Source Energy Systems are currently one of the most applied renewables technologies used for heating and cooling all over Europe, with its basic principle laying in the consideration of the soil as a heat source or sink. The study of the thermal transfer mechanisms and thermal properties that characterize the soil thermal behavior are therefore crucial in the evaluation and design of more efficient systems. This work presents the thermal characterization of a sandy soil and a set of numerical analysis relative to the thermal soil-pile foundation interaction. The laboratory work consists on a series of thermal conduction tests by carried out in an apparatus conceived for that purpose. The results interpretation is based on the Hot Wire Method. The influence of factors such as the void ratio on the thermal conductivity is analysed. The numerical analyses, only taking into account heat conduction, has the main purpose of presenting the main variables involved in a thermoactive pile operation for dry and totally saturated conditions as well as the possible temperature range involved

Downloads

Download data is not yet available.

References

Adam, D.; Markiewicz, R. (2009). Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique, 59(3), 229–236.

Banks, D. (2012). An Introduction to Thermogeology: Ground Source Heating and Cooling. Oxford, UK: Wiley-Blackwell. http://doi.org/10.1002/9781118447512

Brandl, H. (2006). Energy foundations and other thermo-active ground structures. Géotechnique, 56(2), 81–122. http://doi.org/10.1680/geot.2006.56.2.81

Carlslaw, H. S.; Jaeger, J. C. (1959). Conduction of Heat in Solids; Clarendon Press, Oxford Science Publications, UK, ISBN 0-19-853368-3.

Çengel, Y. (2003). Heat Transfer, A Practical Approach; 2nd ed, McGraw-Hill, New York, USA, 853 p.

Farouki, O.T. (1981). Thermal properties of soils (No. CRREL-MONO-81-1). Cold Regions Research and Engineering Lab Hanover NH.

Franco, A. (2007). An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient Hot-Wire Method. Applied Thermal Engineering, 27 (14-15), 2495–2504.

Healy, J. J.; de Groot, J. J.; Kestin, J. (1976). The theory of the transient Hot-Wire Method for measuring thermal conductivity. Physica 82C, 392–408.

Hillel, D. (1998). Environmental Soil Physics; 2nd ed, Academic Press, London, UK, 225 p.

Itasca (2011). FLAC-Fast Lagrangean Analysis of Continua, Version 7.0 User's Manual, Minnesota, Itasca Consulting Group.

Khan, M. (2002). Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 37(6),607–614.

http://doi.org/10.1016/S0360-1323(01)00061-0

Laloui, L.; Di Donna, A. (2013). Energy Geostructures: Innovation in Underground Engineering; Wiley and Sons, London, UK, 304 p.

Low, J.; Loveridge, F.; Powrie, W. (2015). A comparison of laboratory and in situ methods to determine soil thermal conductivity for energy foundations and other ground heat exchanger applications. Acta Geotechnica, 10, 209-218.

Lowrie, W. (2007). Fundamentals of Geophysics; 2nd edition, Cambrige University Press,New York, USA,393 p.

Lopes, H. (2014). Sistemas Geotérmicos de Baixa Entalpia-Estudos de Caracterização Térmica. Dissertação de Mestrado em Engenharia Geológica, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.

Lund, J.; Freeston, D.; Boyd; T. (2011). Direct utilization of geothermal energy, 2010 worldwide review. Geothermics, 40(3), 159–180.

Madureira, P.; Antunes, P. (2012). Geotermia de muito baixa entalpia. Razões e vantagens do seu aproveitamento. Geonovas, 25, 27–33.

McCorry, M.; Jones, G. (2011). Geotrainet Training Manual for Designers of Shallow Geothermal Systems. Brussels: GEOTRAINET.

Merckx, B.; Dudoignon, P.; Garnier; J. P.; Marchand, D. (2012). Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geomaterials: Microstructure and Saturation Effect. Advances in Civil Engineering, 2012, 1–10.

Nikolaev, I.V.; Leong, W.H.; Rosen. M.A. (2013). Experimental investigation of soil thermal conductivity over a wide temperature range. International Journal of Thermophysics, 34, 1110-1129.

Pahud, D.; Hubbuch, M. (2007). Measured thermal performances of the energy pile system of the dock midfield at Zurich Airport, European Geothermal Congress.

Pettijohn, F. (1948). A preface to the classification of Sedimentary rocks. The Journal of Geology, 56(2), 112–117.

Presley, M.; Christensen, P. (1997). Thermal conductivity measurements of particulate materials 1. A review. Journal of Geophysical Research, 102(E3), 6535–6549.

Rees, S. W.; Adjali, M. H.; Zhou, Z.; Davies, M.; Thomas, H. R. (2000). Ground heat transfer effects on the thermal performance of earth-contact structures. Renewable and Sustainable Energy Reviews, 4(3), 213–265. http://doi.org/10.1016/S1364-0321(99)00018-0

VDI 4640 (2010) Thermal Use of the Underground. Part 1: Fundamentals, approvals, environmental aspect. Berlin: VDI-Gessellschaft Energie und Umwelt (GEU).

Vieira, A.; Maranha, J. (2012). Estudo de Modelação Numérica do Comportamento de Estruturas Termoactivas. Atas do XIII Congresso Nacional de Geotecnia. doi10.13140/RG.2.1.2894.7368

Williams, J.; Smith, M. (1989). The Frozen Earth-Fundamentals of Geocryology; Cambrige University Press, New York, USA, 323 p.

Published

2019-10-15

Issue

Section

Articles