Fall cone test applied to studies of plasticity and shear strength of artificial soils

Authors

  • Paula Branco Pinto METROPLAN, RS, Brasil
  • Antonio Marcos de Lima Alves Escola de Engenharia, Universidade Federal do Rio Grande-FURG
  • Cezar Augusto Burkert Bastos Escola de Engenharia, Universidade Federal do Rio Grande-FURG

DOI:

https://doi.org/10.24849/j.geot.2018.143.05

Keywords:

Fall cone, Atterberg limit, undrained shear strength

Abstract

The plasticity and shear strength in undrained conditions are properties of great importance in geotechnical projects involving fine soils. The use of expedite tests to measure these properties in the laboratory, from undisturbed or remoulded samples, is attractive given the greater repeatability. The Fall Cone Test is an alternative for this purpose. In the present work, the fall cone test was used to evaluate the undrained shear strength and the plasticity of samples of artificial soils, made in the laboratory, from mixtures of kaolin, bentonite, fine sand and distilled water in different proportions. Samples of the unconsolidated mixtures (paste-like), and samples consolidated under various vertical stresses were tested. A Proctor compacting cylinder was used as a mould for the preparation of the samples. To compare with the results of the cone test, shear strength was measured by laboratory vane tests, and the Atterberg limits of consistency (liquid limit and plastic limit) were quantified by the traditional Casagrande tests. The experimental results were interpreted and compared with theoretical models and other experimental results found in the technical literature.

Downloads

Download data is not yet available.

References

ABNT (2016a). Grãos de pedregulho retidos na peneira de abertura 4,8 mm - Determinação da massa específica, da massa específica aparente e da absorção de água.

NBR 6458 (Anexo B: Grãos de solo que passam na peneira de 4,8 mm – Determinação da massa específica). Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016b). Solo – Determinação do limite de liquidez. NBR 6459. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016c). Solo – Determinação do limite de plasticidade. NBR 7180. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

ABNT (2016d). Solo – Análise granulométrica. NBR 7181. Associação Brasileira de Normas Técnicas, Rio de Janeiro.

Belviso, R.; Ciampoli, S.; Cotecchia, V.; Federico, A. (1985). Use of the cone penetrometer to determine consistency limits. Ground Engineering, vol. 18, nº 5, pp. 21-22.

Bicalho, K.V.; Gramelich, J.C.; Cunha, C.L.S.; Sarmento Jr., R.G. (2017). Estudo dos valores do limite de liquidez obtidos pelos métodos de Casagrande e cone para diferentes argilas. Geotecnia, vol. 140, pp. 63–72.

Brown, P.J.; Huxley, M.A. (1996). The cone factor for a 30o cone. Ground Engineering, vol. 29, nº 10, pp. 34-36.

BSI (1990). Methods of test for soils for civil engineering purposes. BS 1377. Milton Keynes, British Standards Institution, United Kingdom.

Camargo, K.R.; Bastos, C.A.B.; Silva, C.F. (2010). Análise da permeabilidade e de propriedades de compactação de solos compactados com adição de bentonita para uso como barreira mineral. Anais do XV Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, 8 p., Gramado.

Campbell, D.J. (1976). Plastic limit determination using a drop-cone penetrometer. Journal of Soil Science, vol. 27, pp. 295-300.

Carvalho, J.B.Q. (1986). The applicability of the cone penetrometer to determine the liquid limit of lateritic soils. Géotechnique, vol. 36, nº 1, pp. 109-111.

Casagrande, A. (1932). Research on the Atterberg limits of soils. Public Roads, vol. 13, nº 8, pp. 121-136.

Feng, T.W. (2000). Fall cone penetration and water content relationship of clays. Géotechnique, vol. 50, nº 2, pp. 181–187.

Grønbech, G.L.; Nielsen, B.N.; Ibsen, L.B. (2011). Comparison of liquid limit of highly plastic clay by means of Casagrande and fall cone apparatus. Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, 7 p., Toronto.

Haigh, S.K.; Vardanega, P.J.; Bolton, M.D. (2013). The plastic limit of clays. Géotechnique, vol. 63, nº 6, pp. 435-440.

Hansbo, S. (1957). A new approach to the determination of the shear strength of clay by the fall-cone test. Proceedings of the Royal Swedish Geotechnical Institute, nº 14, Stockholm.

Harrison, J.A. (1988). Using the BS cone penetrometer for the determination of the plastic limit of soils. Géotechnique, vol. 38, nº 3, pp. 433–438.

Hazell, E. (2008). Numerical and experimental studies of shallow cone penetration in clay. Ph. D. Thesis, Oxford University, UK.

Head, K.H. (1982). Manual of soil laboratory testing. Vol. 2, Pentech Press, London.

Houlsby, G.T. (1982). Theoretical analysis of the fall cone test. Géotechnique, vol. 32, nº 2, pp. 111-118.

Hrubesova, E; Lunackova, B; Brodzki, O. (2016). Comparison of liquid limit of soils resulted from Casagrande test and modificated cone penetrometer methodology. Procedia Engineering, vol. 142, pp. 364–370.

Karlsson, R. (1961). Suggested improvements in the liquid limit test, with reference to flow properties of remolded clays. Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 171-184, Paris.

Koumoto, T.; Houlsby, G.T. (2001). Theory and practice of the fall cone test. Géotechnique, vol. 51, nº 8, pp. 701-712.

Leroueil, S.; Le Bihan, J.P. (1996). Liquid limits and fall cones. Canadian Geotechnical Journal, vol. 33, pp. 793-798.

Littleton, I.; Farmilo, M. (1977). Some observations on liquid limit values with reference to penetration and Casagrande tests. Ground Engineering, vol. 10, nº 4, pp. 111-118.

Martins, I.S.M. (2018). Comunicação pessoal.

Massarsch, K.R; Fellenius, B.H. (2012). Early swedish contributions to geotechnical engineering. Proceedings of the GeoCongress 2012, pp. 239-256, Oakland.

Matteo, L. (2012). Liquid limit of low-to medium-plasticity soils: comparison between Casagrande cup and cone penetrometer test. Bulletin of Engineering Geology and the Environment, vol. 71, nº 1, pp. 79–85.

Mishra, A.K.; Ohtsubo, M.; Li, L.Y.; Higashi, T. (2012). Influence of various factors on the difference in the liquid limit values determined by Casagrande’s and fall cone method. Environmental Earth Sciences, vol. 65, nº 1, pp. 21–27.

Mohajerani, A. (1999). A suggested calibration for the cone penetrometer liquid limit. Australian Geomechanics, vol. 34, nº 4, pp. 71-76.

Moon, C.F.; White, K.B. (1985). A comparison of liquid limit tests results. Géotechnique, vol. 35, nº 1, pp. 59-60.

MRD-Qld (1983). Assessment of the relationship between liquid limit and associated results of the cone penetrometer and Casagrande test. Main Roads Department, Queensland.

Norman, L.E.J. (1958). A comparison of values of liquid limit determined with apparatus having bases of different hardness. Géotechnique, vol. 8, nº 2, pp. 79-84.

Özer, M. (2009). Comparison of liquid limit values determined using the hard and soft base Casagrande apparatus and the cone penetrometer. Bulletin of Engineering Geology and the Environment, vol. 68, nº 3, pp. 289–296.

Pinto, P.B.; Rosa, K.L.; Alves, A.M.L.; Bastos, C.A.B. (2012). Comparação entre resultados de ensaios de Casagrande e de cone de queda livre para determinação do limite de liquidez. Anais do XVI Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica, 6 p., Ipojuca.

Prakash, K.; Sridharan, A. (2006). Critical appraisal of the cone penetration method of determining soil plasticity. Canadian Geotechnical Journal, vol. 43, nº 8, pp. 884-888.

Rajasekaran, G; Rao, N. (2004). Falling cone method to measure the strength of marine clays. Ocean Engineering, vol. 31, nº 14-15, pp. 1915–1927.

Schofield, A.N.; Wroth, C.P. (1968). Critical State Soil Mechanics. McGraw-Hill, New York.

Sherwood, P.T.; Ryley, M.D. (1970). An investigation of a cone penetrometer method for the determination of the liquid limit. Géotechnique, vol. 20, nº 2, pp. 203-208.

Sivakumar, V.; Glynn, D.; Cairns, P.; Black, J.A. (2009). A new method of measuring plastic limit of fine materials. Géotechnique, vol. 59, nº 10, pp. 813–823.

Skempton, A.W.; Northey, R.D. (1953). The sensitivity of clays. Géotechnique, vol. 3, nº 1, pp. 30-53.

Spagnoli, G. (2012). Comparison between Casagrande and drop-cone methods to calculate liquid limit for pure clay. Canadian Journal of Soil Science, vol. 92, nº 6, pp. 859-864.

Sridharan, A.; Prakash, K. (2000). Percussion and cone methods of determining the liquid limit of soils: controlling mechanisms. Geotechnical Testing Journal, vol. 23, nº 2, pp. 236–244.

Stone, K.J.L.; Phan, C.D. (1995). Cone penetration tests near the plastic limit. Géotechnique, vol. 45, nº 1, pp. 155–158.

Tanaka, H; Hirabayashi, H.; Matsuoka, T.; Kaneko, H. (2012). Use of fall cone test as measurement of shear strength for soft clay materials. Soils and Foundations, vol. 52, nº 4, pp. 590–599.

Tomazelli, L.J., Villwock, J.A. (2005). Mapeamento geológico de planícies costeiras: o exemplo da costa do Rio Grande do Sul. Gravel, nº 3, pp. 109–115.

Wasti, Y; Bezirci, M.H. (1986). Determination of the consistency limits of soils by the fall cone test. Canadian Geotechnical Journal, vol. 23, pp. 241-246.

Whyte, I.L. (1982). Soil plasticity and strength - a new approach using extrusion. Ground Engineering, vol. 15, nº 1, pp. 16-24.

Wires, K.C. (1984). The Casagrande method versus the drop-cone penetrometer method for the determination of liquid limit. Canadian Journal of Soil Science, vol. 64, nº 2, pp. 297-300.

Wood, D. M. (1982). Cone penetrometer and liquid limit. Géotechnique, vol. 32, nº 1, pp. 152-157.

Wood, D.M. (1985). Some fall cone tests. Géotechnique, vol. 35, nº 1, pp. 64-68.

Wood, D.M.; Wroth, C.P. (1978). The use of the cone penetrometer to determine the plastic limit of soils. Ground Engineering, vol. 11, nº 3, p. 37.

Wroth, C.P.; Wood, D.M. (1978). The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, vol. 15, nº 2, pp. 137-145.

Published

2018-07-05

Issue

Section

Articles