Simulation of vertical flow in a sanitary landfill: a case study

Authors

  • Victoria Souza COPPE/UFRJ
  • Claudio Mahler PEC/COPPE/UFRJ
  • Martinus Genuchten DEM/COPPE/UFRJ.
  • Elizabeth Pontedeiro PEM/COPPE/UFRJ

DOI:

https://doi.org/10.24849/j.geot.2015.134.01

Keywords:

Sanitary landfill, Vertical flow, Computational modelling

Abstract

This research aimed to study the flow of water through cover layers of landfills using the HYDRUS-1D computational code (Šimůnek et al., 2013). After a parametric study based on data obtained from field and laboratory tests, the final unsaturated hydraulic parameters were selected for simulating flow through a landfill assuming the particular geometry. Based on the final configuration of the landfill, two scenarios were considered. First assuming flow through individual landfill cells, after which the volumes of fluid produced by each cell were added together. Second considering overlapping cells as in the actual field situation, with the volumes calculated for each profile height added to produce one overall drainage estimate for the entire landfill. Volumes of leachate obtained for both scenarios were compared with field observation drainage rates. The research shows that the selected 1D computer code proved to be an efficient tool for studying flow in municipal solid waste landfills. Results suggest that hydrological processes in a landfill are strongly influenced by rainfall, hydraulic conductivity and the number and thicknesses of intermediate and final cover layers.

Downloads

Download data is not yet available.

References

Associação Brasileira de Normas Técnicas (2000). NBR 14545 - Determinação do coeficiente de permeabilidade de solos argilosos a carga variável. Rio de Janeiro.

Borba, S.M.P. (2006). Análise de Modelos de Geração de Gases em Aterros Sanitários: Estudo de Caso. Dissertação de Mestrado, Programa de Pós-graduação em Engenharia Civil da COPPE, Universidade Federal do Rio de Janeiro, Brasil, 134 p.

Bortolazzo, W.M. (2010). Estimativa da Produção de Percolados no Aterro Sanitário de Nova Iguaçu com a Aplicação de Modelos Computacionais. Dissertação de Mestrado, Programa de Pós-graduação em Engenharia Civil da COPPE, Universidade Federal do Rio de Janeiro, Brasil, 189 p.

Breitmeyer, R.J. (2011). Hydraulic Characterization of Municipal Solid Waste, PhD Dissertation, University of Wisconsin-Madison, USA, 192p.

Brooks, R.H.; Corey, A.T. (1964). Properties of porous media affecting fluid flow, J. Irrig. Drainage Div., ASCE Proc. 72(IR2), pp. 61-88.

Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research, 32(9), pp. 211-223.

GEORIO (2014). Prefeitura do Rio de Janeiro – Alerta Rio, Dados Pluviométricos Diários. Disponível em: <http://www0.rio.rj.gov.br/alertario/>. Acesso em: 04/03/2014.

INMET (2011). Instituto Nacional de Meteorologia. Disponível em:

<http://www.inmet.gov.br/sonabra/maps/pg_automaticas.php>. Acesso em: setembro de 2011.

Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. Water Resources Research, 32(9), pp. 2697-2703.

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), pp. 513-522.

Schaap, M.G.; Leij, F.J.; van Genuchten, M.Th. (2001). Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 01/2001, 251, pp. 163-176.

Šimůnek, J.; Šejna, M.; van Genuchten, M.Th. (1998). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated media. Version 2.0. IGWMC – TPS – 70, International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, 162p.

Šimůnek, J.; Šejna, M.; van Genuchten, M.Th. (2013). The HYDRUS-1D package for simulating the movement of water, heat, and multiple solutes in variably saturated media. Version 4.16. Department of Environmental Sciences, University of California, Riverside, California, USA.

van Genuchten, M.Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), pp. 892-898.

Vogel, T.; Císlerová, M. (1988). On the reliability of unsaturated hydraulic conductivity calculated from the moisture retention curve. Transport in Porous Media, 3(1), pp. 1-15.

Published

2015-07-21

Issue

Section

Articles