Development of new technologies for inclinometers applied to monitoring geotechnical structures
DOI:
https://doi.org/10.24849/j.geot.2014.132.06Keywords:
Inclinometers, MEMS technology, MonitoringAbstract
The systems for measurement and control of slopes have the main goal of checking the existence and evolution of horizontal movements in the ground and are indispensable in risky areas. A commonly used tool for the measurement of movements in slopes is the inclinometer, which measures the inclination of its probe related to the gravitational vertical, dividing the depth in equal parts defined by the distance between the probe casters. The development and implementation operated in the inclinometer described in this work provide as main features: reduction of the depth segmentation to 0.15m, thus increasing the number of measurements along the measured part; automatic measurement of the probe depth and inclination with the probe in motion; use of an interface program that captures all measurements through Bluetooth communication and records these results in a CSV file recognized by all spreadsheets.
Downloads
References
Abdoun, T. (2010). MEMS Based Real-Time Monitoring System For Geotechnical Structures. Indian Geotechnical Conference, GEOtrendz. IGS Mumbai Chapter & IIT Bombay.
Bennett, V.; Abdoun, T.; Zeghal, M.; Koelewijn, A.; Barendse, M.; Dobry, R. (2011). Real-time Monitoring System and Advanced Characterization Technique for Civil Infrastructure Health Monitoring. Advances in Civil Engineering, Vol. 2011, Article ID 870383. Hindawi Publishing Corporation.
Busslinger, M. (2009). Landslide time-forecast methods. HSR University of Applied Sciences Institut für Bau und Umwelt. Disponível em http://bau.hsr.ch. Acesso em 13. Jan. 2012.
Dixon, N.; Spriggs, M. (2007). Quantification of Slope Displacement Rates Using Acoustic Emission Monitoring. Canadian Geotechnical Journal 44, 6, 966-976.
Dunnicliff, J. (1988). Geotechnical Instrumentation for Monitoring Field Performance. Lexington, Massachusetts: John Wiley & Sons, Inc.
Hanto, D.; Widiyatmoko, B.; Hermanto, B.; Puranto, P.; Handoko, L.T. (2011). Real-time inclinometer using accelerometer MEMS. Research Center for Physics, Indonesian Institute of Sciences.
Krelling, P.C.L. (2006). Concepção de um Inclinômetro Foto-Mecânico para Controle Geodésico de Estruturas. Tese Doutorado. UFPR, Curitiba.
Lin, C.P.; Tang, S.H. (2005). Development and Calibration of a TDR Extensometer for Geotechnical Monitoring. Geotechnical Testing Journal, Vol. 28, nº 5.
Machan, G.; Bennett, V.G. (2008). Use of Inclinometers for Geotechnical Instrumentation on Transportation Projects: State of the Practice. Transportation Research Board, Soils and Rock Instrumentation Committee, Engineering Geology Committee.
Mishra, P.K.; Shukla, S.K.; Dutta, S.; Chaulya, S.K.; Prasad, G.M. (2011). Detection of Landslide Using Wireless Sensor Network. Central Institute of Mining and Fuel Research. IEEE.
Rosi, A.; Bicocchi, N.; Castelli, G.; Mamei, M.; Zambonelli, F.; Berti, M.; Corsini, A. (2011). Landslide Monitoring With Sensor Networks: Experiences and Lessons Learnt from a Real World Deployment. Int. Journal Signal and Imaging Systems Engineering.
Russo, L.N. (2005). Interpretação de Deformação e Recalque na Fase de Montagem de Estrutura de Concreto com Fundação em Estaca Cravada. Tese Doutorado. USP-Escola de Engenharia de São Carlos.
Stark, T.D.; Choi, H. (2008). Slope Inclinometers for Landslides. Technical Development: Landslide.
Tofani, V.; Segoni, S.; Agostini, A.; Catani, F.; Casagli, N. (2013). Technical Note: Use of Remote Sensing for Landslide Studies in Europe. Natural Hazards and Earth System Sciences.
Yin, J., Zhu, H. (2008). Monitoring of soil nailed slopes and dams using innovative technologies. Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hong Kong, China.