Method of performance evaluation of dams by instrument clustering – Application to Itaipu
DOI:
https://doi.org/10.24849/j.geot.2014.132.08Keywords:
Safety of dams, Instrumentation, Instrument clusteringAbstract
A proper dam instrumentation system should be able to detect variations in readings over its life cycle as a result of aging and environmental changes. The study about how the interaction between readings from different instruments occurs and how environmental variables affect them can be very useful to understand the mechanisms that affect the behaviour of a dam. This paper presents a method for evaluating dam performance by means of clustering instruments with similar behaviour, using linear and non-linear statistical correlations as an analysis tool for auscultation instruments. Through the proposed study, it is possible to detect malfunctioning instruments and anomalous dam behaviour, besides collecting evidence about the geotechnical mechanisms that result in similarity between both situations. In order to exemplify and validate the proposed method, piezometric data from the Itaipu Binational dam have been studied.
Downloads
References
Andraos, N.C.; Sanchez, P.F.; Dyminski, A.S.; Ribeiro Jr., P.J.; Osako, C.I. (2008). Mapeamento geoestatístico de subpressões no maciço de fundação da barragem de Itaipu. XIV Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica – COBRAMSEG (RJ), Búzios.
Bowles, D.S. (2004). ALARP evaluation: using cost effectiveness and disproportionality to justify risk reduction. ANCOLD Bulletin, vol. 127, pp. 73-88.
Buzzi, M.F. (2007). Avaliação das correlações de séries temporais de leituras de instrumentos de monitoração geotécnico-estrutural e variáveis ambientais em barragens – Estudo de caso de Itaipu. Dissertação apresentada ao Programa de Pós-Graduação em Métodos Numéricos em Engenharia, Universidade Federal do Paraná (BR), Curitiba.
Charles, J.A.; Tedd, P.; Warren, A. (2011). Evidence Report – Lessons from historical dam incidents. Environment Agency (UK), Bristol.
Chonghui, F.; Xiang, H.; Yahui, D.; Boqing, F. (2012). Analysis of dam-break case of concrete arch dam and forecast of failure scope based on point safety factor. Procedia Engineering, vol. 28, pp. 617-625.
Cohen, J. (1992). Statistical Power Analysis. Current Directions in Psychological Science, vol. 1, no 3, pp. 98-101.
Comitê Brasileiro de Barragens (2001). Guia Básico de Segurança de Barragens. Comissão Regional de Segurança de Barragens (BR), São Paulo.
Dam Safety (2013). Association of State Dam Safety Officials. http://www.damsafety.org/
Department of Natural Resources and Mines (2002). Queensland Dam Safety Management Guidelines. Queensland Government (AU), Brisbane.
Dunnicliff, J. (1993). Geotechnical Instrumentation for Monitoring Field Performance. 2ª edição. John Wiley & Sons (US), New York.
Graham, W.J. (1999). A Procedure for Estimating Loss of Life Caused by Dam Failure. Bureau of Reclamation, United States Department of Interior (US), Denver.
He, X.Y.; Wang, Z.Y.; Huang, J.C. (2008). Temporal and spatial distribution of dam failure events in China. International Journal of Sediment Research, vol. 23, pp. 398-405.
Itaipu (2013). Itaipu Binacional. http://www.itaipu.gov.br/
Mata, J. (2010). Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models. Engineering Structures, vol. 33, pp. 903-910.
Papadrakakis, M.; Papadopoulos, V.; Lagaros, N.D.; Oliver, J.; Huespe, A.E., Sánchez, P. (2006). Vulnerability analysis of large concrete dams using the continuum strong discontinuity approach and neural networks. Structural Safety, vol. 30, pp. 217-235.
Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. (2008). Reported tailing dam failures. A review of the European incidents in the worldwide context. Journal of Hazardous Materials, vol. 152, pp. 846-852.
Salking, N.J. (2011). Statistics for people who (think they) hate statistics. 4ª edição. SAGE Publications Inc (US), Thousand Oaks.
Silveira, J.F.A. (2003). Instrumentação e Comportamento de Fundações de Barragens de Concreto. Oficina de Textos (BR), São Paulo.
Spiegel, M.R.; Stephens, L.J. (2011). Statistics. 4ª edição. The McGraw-Hill Companies Inc (US), New York.
Tan, P.N.; Steinbach, M.; Kumar, V. (2005). Introduction to Data Mining. 1ª edição. Addison Wesley Longman Publishing Co. (US), Boston.