Rock mass classification through terrestrial laser scanning
DOI:
https://doi.org/10.14195/2184-8394_124_4Keywords:
Geomechanic classification, Rock masses, Terrestrial laser scanningAbstract
Through three-dimensional digital image of a metacalcareous mine, obtained from a device called a terrestrial laser scanner, was conducted the respective rock mass classification. The object studied is the Saivá mine, located in Rio Branco do Sul, Paraná, Brazil. We evaluated, among other factors, the spacing between joints, the strength of intact rock and the orientation of the discontinuities in digital media. These results allow us to calculate Rock Quality Indexes, for example, using the methods of Priest and Hudson (1976, 1981) and Deere et al. (1967), which, together with other parameters, subsidized the rock mass classification of the Saivá mine by the methods of Bieniawski (1974), Barton et al. (1974) and Wickham et al. (1974). Results of classification show that the rock mass where Saiva mine is has a good geomechanical quality and it is possible to use the scanner in rock mass classification.
Downloads
References
Abellán, A.; Vilaplan, J.M.; Martínez, J. (2006). Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Engineering Geology, 88, pp. 136-148.
Armesto, J.; Ordóñez, C.; Alejano, L.; Arias, P. (2009). Terrestrial laser scanning used to determine the geometry of a granite stability analysis purposes. Geomorphology, 106, pp. 271-277.
Barton, N.; Lien, R.; Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, v. 6, nº. 4, pp. 189-236.
Barton, N. (1976). Recent experiences with the Q-System of tunnel support design. Exploration for rock engineering. Johannesburg: A.A. Balkema. pp. 107-115.
Bieniawski, Z. T. (1974). Geomechanics classification of rock masses and its application to tunneling. Cong. Intl. Soc. Rock Mech., 3, Proceedings, V II-A, Denver, pp. 27-32.
Bieniawski, Z. T. (1976). Rock mass classification in rock engineering. Johannesburg: A.A. Balkema, pp. 97-106.
Bieniawski, Z. T. (1989). Engineering rock mass classifications. Nova Iorque. Ed. John Wiley & Sons, 251p.
Bieniawski, Z. T. (1993). Design methodology for rock engineering: principles and practice. vol. 2 e 3. Editor-in-chief John A. Hudson, pp. 779-793.
Dalmolin, Q.; Dos Santos, D. R. (2004). Sistema lasercanning: conceitos e princípios de funcionamento. Departamento de Geomática. Ed. UFPR. 3ed. Curitiba, 97p.
Deere, D.U.; Hendron, A. J.; Patton, F. D.; Cording, E. J. (1967). Design of surface and near surface construction in rock. Symp. Rock Mechanichs Am. Inst. Min. Mettal & Pet. Eng. 8, Mineapolis, pp. 237-302.
Deere, D. U. (1963). Technical description of rock cores for engineering purposes. Rock Mech. Eng. Geol., 1, pp. 17-22.
Dunning, S. A.; Massey, C. I.; Rosser, N. J. (2009). Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology, 103, pp. 17-29.
Fardin, N.; Stephansson, O; Jing, L. (2001). The scale dependence of rock joint surface roughness. International Journal of Rock Mechanics & Mining Sciences, 38, pp. 659-669.
Fardin, N.; Feng, Q.; Stephansson, O. (2004). Application of a new in situ 3D laser scanner to study the scale effect on the rock joint surface roughness. International Journal of Rock Mechanics & Mining Sciences, 41, pp. 329-335.
Fiori, A. P.; Carmignani, L. (2009). Fundamentos de mecânica dos solos e das rochas: aplicações na estabilidade de taludes. 2ª ed. Editora UFPR. Curitiba. 604p.
Franceschi, M.; Teza, G.; Preto, N.; Pesci, A.; Galgaro, A.; Girardi, S. (2009). Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing 64, v.6, pp. 1-7.
Hoek, E.; Marinos, P.; Benissi, M. (1998). Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens schist formation. Bull. Eng. Geol. Environ., 57, pp. 151-60.
Lato, M.; Diederichs, M. S.; Hutchinson, D. J.; Harrap, R. (2009). Optimization of LIDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. International Journal of Rock Mechanics & Mining Sciences, 46, pp. 194-199.
Liu, Y.; Chen, C. (2007). A new approach for application of rock mass classification on rock slope stability assessment. Engineering Geology, 89, pp. 129-143.
Marinos, P.; Hoek, E. (2000). GSI - a geologically friendly tool for rock mass strength estimation. Proceedings of geological engineering 2000 conference, Melbourne, pp.1422-1446.
Marinos, P.; Hoek, E. (2001). Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull. Eng. Geol. Environ., 60, pp. 85-92.
Marinos, V.; Marinos, P.; Hoek, E. (2005). The geological strength index: applications and limitations. Bull. Eng. Geol. Environ., 64, pp. 55-65.
Mezzomo, E. (2007). Integração de modelos numéricos para caracterização do arcabouço geológico 3D na porção Centro-Leste da Bacia do Paraná. Dissertação de Mestrado. Universidade Federal do Paraná, Curitiba, 98p.
Nagalli, A.; Fiori, A. P.; Rostirolla, S. P.; Pierin, A. R. H. (2008). Utilização de 3D laser scanner para aquisição de dados geológico-estruturais no desenvolvimento de modelo geomecânico - Estudo de caso da Mina Saivá, Paraná. Anais do 44º Congresso Brasileiro de Geologia, Curitiba.
Nagalli, A. (2010). Estabilidade de taludes em rocha com aplicação de escâner a laser – caso da mina Saivá, Rio Branco do Sul, PR. Tese de doutorado. Programa de pós-graduação em Geologia, UFPR, Curitiba, 142p.
Pantelidis, L. (2009). Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics & Mining Sciences, 46, pp. 315-325.
Paronuzzi, P.; Serafini, W. (2009). Stress state analysis of a collapsed overhanging rock slab: A case study. Engineering Geology, 108, pp. 65-75.
Pesci, A.; Massimo, F.; Conforti, D.; Loddo, F. (2007). Integration of ground-based laser scanner and aerial digital photogrammetry for topographic modeling of Vesuvio volcano. Journal of Volcanology and Geothermal Research, 162, pp. 123-138.
Priest, S. D.; Hudson, J. A. (1976). Discontinuity spacing in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13, pp. 135-148.
Priest, S. D.; Hudson, J. A. (1981). Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18, pp. 183-197.
Romana, M. A (1985). Geomechanical classification for slopes (SMR). Comission of the European Communities: Course on Slope instability and the other natural hazards. Valência, pp. 101-123.
Smith, J. V. (2004). Determining the size and shape of blocks from linear sampling for geotechnical rock mass classification and assessment. Journal of Structural Geology, 26, pp. 1317–1339.
Sturzenegger, M.; Stead, D. (2009). Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Engineering Geology, 106, pp. 163-182.
Singh, S., West, J. (1991). Cyclone: a laser scanner for mobile robot navigation. Carnegie Mellon University, Robotics Institute Technical Report, CMU-RI-TR-91, 18p.
Singh, A. (2004). FRHI - a system to evaluate and mitigate rockfall hazard in stable rock excavations. Journal Div. Civ. Eng. Inst. Eng., 85, India, pp. 62–75.
Sossai, F. J. M. (2006). Caracterização de rochas para uso na construção civil. Dissertação de Mestrado. Universidade Federal de Viçosa, Viçosa, 102p.
Terzaghi, K. (1946). Introduction to tunnel geology. Rock tunneling with steel supports by R. Proctor and T. White, vol.1, Youngstown, Ohio: Youngstown Printing Co., pp. 19–99.
Yoon, J.; Sagong, M.; Lee, J. S.; Lee, K. (2009). Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT&E International, 42, pp. 97-105.
Wickham, G. E.; Tiedemann, H. R.; Skinner, E. H. (1972). Support determinations based on geologic predictions. Proc. 1st Am. Rapid Excav. and Tunneling Conf., Chicago, pp. 43-64.
Wickham, G. E.; Tiedemann, H. R.; Skinner, E. H. (1974). Ground support prediction model, RSR Concept. Proc. Rapid Excav. Tunneling Conf. AIME., Nova Iorque, pp. 691-707.