Integrated assessment of the infiltration and overland flow for differnt rainfall events – Córrego do Vaçununga basin, municipality of Luis Antônio, State of São Paulo, Brazil.
DOI:
https://doi.org/10.14195/2184-8394_106_4Keywords:
Infiltration, Surface runoff, Aquifer, Botucatu formationAbstract
This work presents the results for infiltration and overland flow obtained according to Morel Seytoux and Khanji (1976) and Chu (1978) adaptation of the Green and Ampt (1911) model for steady and transient rainfalls, respectively. The study was carried out in the Córrego do Vaçununga basin, in the city of Luiz Antônio, state of São Paulo, Brazil. Ninety percent of the basin is constituted of eolian sandstones of Botucatu Formation and residual unconsolidated materials. These two geological materials constitute the main aquifer of the region. Laboratorial and in situ tests were performed to characterize the unconsolidated materials in terms of basic physical properties, potential infiltration, suction and hydraulic conductivity. Rainfall data were collected from January of 2000 to December of 2002 and twelve scenarios were defined considering the intensities and duration. Instead of high homogeneity in terms of texture of unconsolidated materials the infiltration and overland flow ratio depends on the uses and associated management techniques.
Downloads
References
Abdulaziz, S; Turbak, A.L. (1996). Geomorphoclimate peak discharge model with a physically based infiltration component. Journal of Hydrology, 176: 1-12.
Abu-Taleb, M.F. (1999). The use of infiltration field tests for groundwater artificial recharge. Environmental Geology, 37(1-2):64-71.
Ando, Y.; Musiake, K.; Takahasi, Y. (1983). Modelling of hydrologic processes in a small natural hillslope basin, based on the synthesis of partial hydrological relationships. Journal of Hydrology, 64: 311 – 337.
Anon (1990). Tropical residual soil. The Quarterly Journal of Engineering Geology, 23(1): 4-93. London.
Associação Brasileira de Normas Técnicas NBR 12004 (1984a). Determinação do índice dos vazios de solo não coesivos. Rio de Janeiro.
Associação Brasileira de Normas Técnicas NBR 6508 (1984b). Grãos de solos que passam na peneira de 4,8mm: determinação da massa especifica. Rio de Janeiro.
Associação Brasileira de Normas Técnicas. NBR 7181 (1984c). Solo: análise granulométrica. Rio de Janeiro.
Bouwer, H. (1969). Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis. Water Resources Research, 2: 729-738.
Casenave, A; Valentin, C. (1992). A runoff capability classification system based on surface features criteria in semi-arid areas of West Africa. Journal of Hydrology, 130: 231 – 249.
Chandler, R. J.; Crilly, M. S; Montgomery-Smith, G. (1992). A low cost method of assessing clay desiccation for low buildings. Proceedings of the Institution of Civil Engineers, 92(2): 82-89.
Chu, S. T. (1978). Infiltration during an unsteady rain. Water Resources Research. 14 (3): 461-466.
Colenbrander, H. J. (1965). The research watershed “Leerinkbek”, Netherlands. I.A.S.H. Symp. On representative and experimental areas, Budapest. Int. Assoc. Sci. Hydrol. Publ., 66 – 2, 558-563.
Cosh, M. H.; Stedinger J. R. and Brutsaert, W. (2004). Variability of surface soil moisture at the watershed scale, Water Resour. Res., 40, W12513, doi:10.1029/2004WR003487.
Culligan, K. A., D.; Wildenschild, B. S. B.; Christensen, W. G.; Gray, M. L. Rivers, and A. Tompson, F. B. (2004). Interfacial area measurements for unsaturated flow through a porous medium, Water Resour. Res., 40, W12413, doi:10.1029/2004WR003278.
Dunne, T.; Black, R. D. (1970). An experimental investigation of runoff production in permeable soils. Water Resources, 6 (2): 179 -191.
Dykes, A. P.; Thornes, J. B. (2000). Hillslope hydrology in tropical rainforest steep lands in Brunei. Hydrological Processes, 14: 215 – 235.
Esteves, M.; Faucher, X; Galle, S; Vauclin, M. (2000). Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology. 228: 265 – 282.
Flerchinger, D. L.; Reeder, J. W.; Franzini, J.B; Remson (1980). Application of the Green – Ampt Model to infiltration under time – Dependent surface water depths. Water Resources Research, 16: 517 – 528.
Gau, H. S. Liu, C. W. (2000). Estimation of the effective precipitation recharge coefficient in an unconfined aquifer using stochastic analysis. Hydrological Processes, 14 (4): 811-830.
Gaze, S.R.; Simmonds, L.P.; Brouuwder, J.; Bouma, J. (1997). Measurement of surface redistribution of rainfall and modelling its effects on water balance calculations for a millet field on sandy soil in Niger. Journal of Hydrology. 188 – 189: 267 – 284.
Gburek, W. J.; Folmar, G. J. (1999). A groundwater recharge field study: site characterization and initial results. Hydrological Processes, 13(17): 2813-2831.
Ghayoumian, J.; Ghermezcheshme, B.; Feiznia, S.; Norrozi, A. A. (2005). Integrating GIS and DSS for identification of suitable areas for artificial recharge, case study Meimeh Basin, Isfahan, Iran. Environmental Geology, 47:493-500.
Giambelluca, T.W., Ridgley, M. A. and Nullet, M.A. (1996). Water balance, climate change and land-use planning in the pearl Harbor basin, Hawai´i. Water Resources Development, 12 ( 4): 515-530.
Green, W. H.; Ampt, C.A (1911). Studies on soils physics I.: The flow of air and water through soils. Journal Agr. Science, IV (Part I): 1 – 24.
Lange, J. ;Greenbaum, N.; Husary, S.; Ghanem, M.; Leibundgut, C. and Schick, A. P. (2003). Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope. Hydrological Processes, 17(2): 279-296.
Libardi, P. L. (1980). Dinâmica da água no solo. Departamento de Ciências Exatas. ESALQ / USP. Piracicaba. 509p.
Lischeid, G.; Kolb, A.; Alewell, C. (2002). Apparent translatory flow in ground water recharge and runoff generation. Journal of Hydrology, 265, 195-211.
Lubczynski, M. W.; Gurwin, J. (2005). Integrating of various data sources for transient groundwater modeling with spatio-temporaly variable fluxes – Sardon study case, Spain. Journal of Hydrology. Doi: 101016/jhydrol.2004.08.038.
Marinho, F. A. M. (1994). Medição de sucção com o método do papel de filtro. Anais do X Cobramsef. V. 2: 515 – 522.
Morel – Seytoux, H. J.; Khanji, J. (1976). Derivation of an equation of infiltration. Water Resources Research, 10 (4): 795 – 800.
Morel- Seytoux, H. J. (1976). Derivation of equations for rainfall infiltration. Journal Hydrology, 31: 203-219.
Philip, J. R. (1993) Variable-head ponded infiltration under constant or variable rainfall. Water Resources Research, 29 (7): 2155-2165.
Salvucci, R. E; Entekhabi, D. (1994). Explicit expressions for Green-Ampt (Delta Function Diffusivity). Infiltration rate and cumulative storage. Water Resources Research, 30 (9): 2661 – 2663.
Sharma, M. L; Gander, G. A; Hunt, C. G. (1980). Spatial variability of infiltration in a watershed. Journal of Hydrology. 45: 101 – 122.
Smith, R.E; Parlange, J,Y. (1978). Parameter-efficient hydrologic infiltration model. Water Resources Research, 14 (3): 533-538.
Sullivan, M; Warwick, J.J.; Tyler, S.W. (1996). Quantifying and delineating spatial variations of surface infiltrating in a small watershed. Journal of hydrology. 181: 149 -168.
Swartzendruber, D. (1974). Infiltration of constant – flux rainfall into soils as analyzed by the approach of Green and Ampt. Soil Science, 117: 272 – 281.
Van Genuchten, M. T. (1980). A Closed-form equation for predicting hydraulic conductivity of unsaturated soils. Journal of Soil Science Society of America, 44: 892-898.