Mine tailings behavior through numerical modelling of simple shear tests
DOI:
https://doi.org/10.14195/2184-8394_158_4Keywords:
numerical modelling, bauxita tailings, simple shear testAbstract
In the context of dam engineering, one topic of great interest is the behavior of mine tailings. In Brazil, a high productivity mining country, the concern about mine tailings behavior increased after recent dam failures. One way to study the strength of these materials is through laboratory tests, specially the Simple Shear tests, which allow to perform analysis by the hypothesis of plane strain. This paper aims to reproduce the behavior of mine tailings when subjected to Simple Shear tests through numerical simulation using the student version of Abaqus®. The analysis performed considered a modified CamClay material and the results were compared to those obtained by Gonçalves (2021), for effective confining stresses of 50 and 100 kPa. The numerical model could reproduce fundamental soil behavior, showing good agreement and converging to the mean confining effective stress.
Downloads
References
ABAL (2017). Bauxita no Brasil: Mineração responsável e competitividade. Associação Brasileira do Alumínio. 66 p.
Airey, D. W.; Muir Wood, D. (1987). An evaluation of direct simple shear tests on clay. Géotechnique, 37(1), 25–35. https://doi.org/10.1680/geot.1987.37.1.25
Andresen, A.; Berre, T.; Kleven, A.; Lunne, T. (1979). Procedures used to obtain soil parameters for foundation engineering in the North Sea. Marine Technology, 3(3), 201–266.
ANM (2020). Anuário Mineral Brasileiro: Principais Substâncias Metálicas—Ano Base 2108. Agência Nacional de Mineração. 42 p.
Budhu, M.; Britto, A. M. (1987). Numerical analysis of soils in simple shear devices. Soils Foundations, 27(2), 31–41.
Carmo, F. F. do; Kamino, L. H. Y.; Junior, R. T.; Campos, I. C. de; Carmo, F. F. do; Silvino, G.; Castro, K. J. da S. X. de; Mauro, M. L.; Rodrigues, N. U. A.; Miranda, M. P. de S.; Pinto, C. E. F. (2017). Fundão tailings dam failures: The environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspectives in Ecology and Conservation, 15(3), 145–151. https://doi.org/10.1016/j.pecon.2017.06.002
Corrêa, M. M.; Oliveira Filho, W. L. (2019). Impact of methods used to reconstitute tailings specimens on the liquefaction potential assessment of tailings dams. REM - International Engineering Journal, 72(3), 507–513. https://doi.org/10.1590/0370-44672018720164
Corte, M. B. (2016). Desenvolvimento de Equipamento para Ensaios Simple Shear. Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul.
Dassault Systemes. (2015). Abaqus 2016 Online Documentation. http://abaqus.software.polimi.it/v2016/books/usb/default.htm
DeGroot, D. J.; Germaine, J. T.; Ladd, C. C. (1994). Effect of Nonuniform Stresses on Measured DSS Stress‐Strain Behavior. Journal of Geotechnical Engineering, 120(5), 892–912. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:5(892)
Doherty, J.; Fahey, M. (2011). Three-dimensional finite element analysis of the direct simple shear test. Computers and Geotechnics, 38, 917–924. https://doi.org/doi:10.1016/j.compgeo.2011.05.005
Dounias, G. T.; Potts, D. M. (1993). Numerical analysis of drained direct and simple shear tests. Journal of Geotechnical Engineering, 119(12), 1870–1891.
Fanni, R.; Reid, D.; Fourie, A. (2022). On reliability of inferring liquefied shear strengths from simple shear testing. Soils and Foundations, 62(3), 101151. https://doi.org/10.1016/j.sandf.2022.101151
Festugato, L.; Consoli, N. C.; Fourie, A. (2015). Cyclic shear behaviour of fibre-reinforced mine tailings. Geosynthetics International, 22(2), 196–206. https://doi.org/10.1680/gein.15.00005
Festugato, L.; Fourie, A.; Consoli, N. C. (2013). Cyclic shear response of fibre-reinforced cemented paste backfill. Géotechnique Letters, 3(1), 5–12. https://doi.org/10.1680/geolett.12.00042
Fourie, A. B.; Reid, D.; Ayala, J. L.; Russell, A. R.; Vo, T.; Rahman, M.; Vinod, J. (2021). Improvements in estimating strengths of loose tailings: Results from the TAILLIQ research project. Proc. Mine Waste and Tailings, 207–217.
Fourie, A. B.; Verdugo, R.; Bjelkevik, A.; Torres-Cruz, L. A.; Znidarcic, D. (2022). Geotechnics of mine tailings: A 2022 State of the Art. Proceedings of the 20th ICSMGE. 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney, Australia.
Gonçalves, R. R. S. (2021). Comportamento Geomecânico de Rejeito de Bauxita sob Diferentes Condições de Confinamento e Carregamento. Dissertação de Mestrado. Universidade Federal do Rio Grande do Sul.
Helwany, S. (2007). Applied Soil Mechanics with Abaqus Applications. John Wiley & Sons.
IBRAM. (2022). Relatório Anual de Atividades—Ano Base 2018. Instituto Brasileiro de Mineração.
James, M.; Aubertin, M.; Wijewickreme, D.; Wilson, G. W. (2011). A laboratory investigation of the dynamic properties of tailings. Canadian Geotechnical Journal, 48(11), 1587–1600. https://doi.org/10.1139/t11-060
Li, W.; Coop, M. R. (2019). The Mechanical behaviour of Panzhihua iron tailings. Canadian Geotechnical Journal, 56(3), 420–435. https://doi.org/10.1139/cgj-2018-0032
Muir Wood, D. (2004). Geotechnical modelling. Spon Press.
Nierwinski, H. P. (2019). Caracterização e comportamento Geomecânico de Rejeitos de Mineração. Tese de Doutoramento. Universidade Federal do Rio Grande do Sul.
Randolph, M.; Wroth, C. P. (1981). Application of the failure state in undrained simple shear shaft capacity of driven piles. Géotechnique, 31(1), 143–157.
Reyno, A. J., Airey, D. W.; Taiebat, H. A. (2005). Influence of height and boundary conditions in simple shear tests. Frontiers in offshore geotechnics.
Roscoe, K. H.; Burland, J. B. (1968). On the generalized Stress-Strain Behavior of Wet Clays. Engineering Plasticity, 535–608.
Santamarina, J. C.; Torres-Cruz, L. A.; Bachus, R. C. (2019). Why coal ash and tailings dam disasters occur. Science, 364(6440), 526–528. https://doi.org/10.1126/science.aax1927
Schaper, D.; Lessa, R.; Freitas, A.; Weeks, B. (2020). De-characterization and closure of TSF: concepts of the Brazilian legislation and international criteria. Planning for Closure 2020, 3rd International Congress on Planning for Closure of Mining Operations (Chapter 6), 12 p.
Schnaid, F.; Bedin, J.; Viana da Fonseca, A. J. P.; de Moura Costa Filho, L. (2013). Stiffness and Strength Governing the Static Liquefaction of Tailings. Journal of Geotechnical and Geoenvironmental Engineering, 139(12), 2136–2144. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000924
Schofield, A.; Wroth, C. P. (1968). Critical State Soil Mechanics. McGraw-Hill.
Suits, L. D.; Sheahan, T.; Frost, J.; Park, J.-Y. (2003). A Critical Assessment of the Moist Tamping Technique. Geotechnical Testing Journal, 26(1), 9850. https://doi.org/10.1520/GTJ11108J
Velten, R. Z.; Consoli, N. C.; Filho, H. C. S.; Wagner, A. C.; Schnaid, F.; Da Costa, J. P. R. (2022). Influence of grading and fabric arising from the initial compaction on the geomechanical characterisation of compacted copper tailings. Géotechnique, 1–12. https://doi.org/10.1680/jgeot.22.00087
Verdugo, R.; Viertel, P. (2004). Effect of density and fines content on the cyclic strength of copper tailings. V Congreso Chileno de Geotecnia.
Wai, D.; Manmatharajan, M. V.; Ghafghazi, M. (2022). Effects of Imperfect Simple Shear Test Boundary Conditions on Monotonic and Cyclic Measurements in Sand. Journal of Geotechnical and Geoenvironmental Engineering, 148(1), 04021164.
https://doi.org/10.1061/(ASCE)GT.1943-5606.0002682
Wijewickreme, D.; Sanin, M. V.; Greenaway, G. R. (2005). Cyclic shear response of fine-grained mine tailings. Canadian Geotechnical Journal, 42, 1408–1421. https://doi.org/10.1139/t05-058
Yu, H.-S. (2006). Plasticity and geotechnics. Springer-Verlag.