A note on determining seismic active earth pressures

Authors

DOI:

https://doi.org/10.14195/2184-8394_159_4

Keywords:

active earth pressures, seismic earth pressures, limit equilibrium

Abstract

For gravity retaining walls supporting cohesionless backfill, a limitation of the validity of Coulomb and Mononobe-Okabe methods for determining static and seismic static-equivalent active earth thrusts, is analysed. It is shown that beyond a certain inclination of the back of the retaining walls, those classic methods are not valid. In these cases a mechanism different from the one of the classical methods is formed. A simple methodology to determine the active earth thrusts depending on the inclination of the back of the retaining wall is presented.

Downloads

Download data is not yet available.

References

Antão, A. N.; Santana, T.; Vicente da Silva, M.; Guerra, N. M. C. (2011). Passive earth-pressure coefficients by upper-bound numerical limit analysis. Canadian Geotechnical Journal, 48(5), pp. 767–780. https://doi.org/10.1139/t10-103.

Antão, A. N.; Santana, T.; Vicente da Silva, M.; Guerra, N. M. C. (2016). Three-dimensional active earth pressure coefficients by upper bound numerical limit analysis. Computers and Geotechnics, 79, pp. 96–104. https://doi.org/10.1016/j.compgeo.2016.05.022.

Barghouthi, A. F. (1990). Active earth pressure on walls with base projection. ASCE Journal of Geotechnical Engineering, 112(7), pp. 727–745. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1570).

Barros, P. L.; Santos, P. J. (2012). Coefficients of active earth pressure with seepage effect. Canadian Geotechnical Journal, 49(6), pp. 651–658. https://doi.org/10.1139/t2012-020.

Collins, L. F. (1973). A note on the interpretation of coulomb’s analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory. Géotechnique, 23(3), pp. 442–447. https://doi.org/10.1680/geot.1973.23.3.442.

Coulomb, C. A. (1776). Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mem. Acad. Roy., 7, p. 38.

Evangelista, A.; Scotto di Santolo, A.; Simonelli, A. L. (2010). Evaluation of psudostatic active earth pressure coefficient of cantilever retaining walls. Soil Dynamics and Earthquake Engineering, 30(11), pp. 1119–1128. https://doi.org/10.1016/j.soildyn.2010.06.018.

Fang, Y.; Yang, Y.; Chen, T. (2003). Retaining walls damaged in the Chi-Chi earthquake. Canadian Geotechnical Journal, 40(6), pp. 1142–1153. https://doi.org/10.1139/t03-055.

Greco, V. R. (1992). Discussion of Active earth pressure on walls with base projection (Barghouthi, 1990). ASCE Journal of Geotechnical Engineering, 118(5), pp. 825–827. https://doi.org/10.1061/ (ASCE)0733-9410(1992)118:5(825).

Greco, V. R. (1999). Active thrust on cantilever walls in general conditions. Soils and Foundations, 39(6), pp. 65–78. https://doi.org/10.3208/sandf.39.6_65.

Greco, V. R. (2001). Pseudo-static thrust on cantilever walls. Soils and Foundations, 41(3), pp. 87–92. https://doi.org/10.3208/sandf.41.3_87.

Kim, W.-C.; Park, D.; Kim, B. (2010). Development of a generalised formula for dynamic active earth pressure. Géotechnique, 60(9), pp. 723–727. https://doi.org/10.1680/geot.09.T.001.

Kloukinas, P.; Mylonakis, G. (2011). Analysis of seismic earth pressures: some recent developments. Proceedings of the ERTC-12 Workshop on evaluation of EC-8, XV European Conference on Soil Mechanics and Geotechnical Engineering, Athens, Greece.

Koseki, J.; Tatsuoka, F.; Munaf, Y.; Tateyama, M.; Kojima, K. (1998). A modified procedure to evaluate active earth pressure at high seismic loads. Soils and Foundations, Special Issue, pp. 209–216. https://doi.org/10.3208/sandf.38.Special_209.

Loukidis, D.; Salgado, R. (2012). Active pressure on gravity walls supporting purely frictional soils. Canadian Geotechnical Journal, 49(1), pp. 78–97. https://doi.org/10.1139/t11-087.

Loureiro, G.; Guerra, N.M.C.; Almeida e Sousa, J. (2014). Acções sobre muros de suporte em consola. Geotecnia, 132, pp.69–92. https://doi.org/10.24849/j.geot.2014.132.05.

Mononobe, N.; Matsuo, H. (1926). On the determination of earth pressures during earthquakes. Proceedings of the World Engineering Conference, volume 9, pp. 177–185. Em japonês; obra não consultada directamente.

Müller-Breslau, H. (1906). Erddruck auf Stützmauern. Kroener, Stuttgart. Em alemão; obra não consultada directamente.

Okabe, S. (1926). General theory of earth pressure. Journal of the Japanese Society of Civil Engi- neers, 12(1), pp. 123–134. Em japonês; obra não consultada directamente.

Rankine, W. J. M. (1857). On the stability of loose earth. Phil. Trans. Royal Soc.

Santana, T.; Guerra, N. M. C.; Antão, A. N.; Vicente da Silva, M. (2013). Three-dimensional seismic active earth pressure coefficients using upper bound numerical limit analysis: a few preliminary results. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Challenges and Innovations in Geotechnics, pp. 1579–1582, Paris. Presses des Ponts. https://www.issmge.org/uploads/publications/1/2/1579-1582.pdf.

Tatsuoka, F.; Tateyama, M.; Koseki, J. (1996). Performance of soil retaining walls for railway embankments. Soils and Foundations, Special Issue, pp. 311–324. https://doi.org/10.3208/sandf. 36.Special_311.

Watanabe, K.; Koseki, J.; Tateyama, M. (2011). Seismic earth pressure exerted on retaining walls under a large seismic load. Soils and Foundations, 51(3), pp. 379–394. https://doi.org/10.3208/ sandf.51.379.

Xinggao, L.; Weining, L. (2010). Study on the action of the active earth pressure by variational limit equilibrium method. International Journal for Numerical and Analytical Methods in Geomecha- nics, 34(10), pp. 991–1008. https://doi.org/10.1002/nag.840.

Yang, X.-L. (2007). Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion. Theoretical and Applied Fracture Mechanics, 47(1), pp. 46–56. https://doi.org/10.1016/j.tafmec.2006.10.003.

Yonezawa, T.; Yamazaki, T.; Tateyama, M.; Tatsuoka, F. (2014). Design and construction of geosynthetic-reinforced soil structures for hokkaido high-speed train line. Transportation Geotech- nics, 1, pp. 3–20. https://doi.org/10.1016/j.trgeo.2013.12.001.

Published

2023-11-28

Issue

Section

Technical Notes