Unsaturated behaviour of soils stabilized with fly ash from coal combustion
DOI:
https://doi.org/10.14195/2184-8394_160_3Keywords:
soil stabilisation, unsaturated soils, alkaline activationAbstract
The influence of suction on the mechanical behavior of chemically stabilized soils has not yet been consistently quantified, a situation also motivated by difficulties in the experimental procedure to characterize the unsaturated response. This paper presents retention curves obtained for a soil stabilized with Portland cement or an alkaline cement. Triaxial tests are also presented, for the same curing conditions, up to 90 days. Previous attempts to characterize retention curves for soil - (alkaline) cement are unknown; the results obtained showed that the pore structure is formed at 28 days, before the development of the gel matrix responsible for the increase in strength. The retention curve changed after stabilization, with different shapes for each binder – Portland generated a higher air entry value and a narrower suction range. The differences between curves for each binder suggest a methodology to evaluate the quality of stabilization by alkaline cement.
Downloads
References
ASTM C 618 - 12 (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual Book of ASTM Standards 2012, vol. 04.02, pp 1-5.
ASTM D 2487 - 06 (2006). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). Annual Book of ASTM Standards 2006, vol. 04.08, pp 1-12.
ASTM D 3282 - 15 (2015). Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. Annual Book of ASTM Standards 2015, vol. 04.08, pp 1-6.
ASTM D 5298 - 16 (2016). Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper. Annual Book of ASTM Standards 2012, vol. 04.08, pp 1-6.
BS 1377-4 (1990). Methods of test for soils for civil engineering purposes, Part 4: Compaction-Related Tests. British Standards Institution, London, 4 p.
BS 1377-8 (1990). Methods of test for soils for civil engineering purposes, Part 8: Shear strength tests (effective stress). British Standards Institution, London, 8 p.
Corrêa-Silva, M.; Araújo, N.; Cristelo, N.; Miranda, T.; Topa Gomes, A.; Coelho, J. (2019). Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications. Road Materials and Pavement Design, 20(8), pp. 1912–1926. https://doi.org/10.1080/14680629.2018.1473286
Cristelo, N.; Glendinning, S.; Pinto, A. T. (2011). Deep soft soil improvement by alkaline activation. Proceedings of the Institution of Civil Engineers: Ground Improvement, 164(2), pp. 73–82. https://doi.org/10.1680/grim.900032
Cristelo, N.; Glendinning, S.; Miranda, T.; Oliveira, D.; Silva, R. (2012). Soil stabilisation using alkaline activation of fly ash for self compacting rammed earth construction. Construction and Building Materials, 36(11), pp. 727–735. https://doi.org/10.1016/j.conbuildmat.2012.06.037
Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. (2013). Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotechnica, 8(4), pp. 395–405. https://doi.org/10.1007/s11440-012-0200-9
Cristelo, N.; Miranda, T.; Oliveira, D.; Rosa, I.; Soares, E.; Coelho, J.; Fernandes, L. (2015). Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2(eq) emissions. Journal of Cleaner Production, 102, pp. 447–460. https://doi.org/10.1016/j.jclepro.2015.04.102
Elliott, G. M.; Brown, E. T. (1985). Yield of a soft, high porosity rock. Géotechnique, 35(4), pp. 413–423. https://doi.org/10.1680/geot.1985.35.4.413
Fernández-Jiménez, A.; Palomo, A.; Criado, M. (2005) Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), pp. 1204–1209. https://doi.org/10.1016/j.cemconres.2004.08.021
Fernández-Jimenez, A.; Torre, A.G. de la; Palomo, A.; López-Olmo, G.; Alonso, M.M.; Aranda, M.A.G. (2006). Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel, 85(5–6), pp. 625–634. https://doi.org/10.1016/j.fuel.2005.08.014
Fredlund, D. G.; Gitirana Jr.; G. (2005). Unsaturated Soil Mechanics as a Series of Partial Differential Equations. in Proceedings of International Conference on Problematic Soils. Eastern Mediterranean University, Famagusta, N. Cyprus, pp. 25–27.
Fredlund, D. G.; Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470172759.
Fredlund, D. G.; Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), pp. 521–532. https://doi.org/10.1139/t94-061
Gens, A. (2010). Soil–environment interactions in geotechnical engineering. Géotechnique, 60(1), pp. 3–74. http://dx.doi.org/10.1680/geot.9.P.109
Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), p. 892. https://doi.org/10.2136/sssaj1980.03615995004400050002x
Han, Z.; Vanapalli, S. K. (2016). Stiffness and shear strength of unsaturated soils in relation to soil-water characteristic curve. Géotechnique, 66(8), pp. 627–647.
https://doi.org/10.1680/jgeot.15.P.104
Lu, N.; Likos, W. J. (2004) Unsaturated Soil Mechanics. New Jersey: John Wiley & Sons, Inc.
Manuel, E. (2013) Melhoria do solo residual granítico com recurso à activação alcalina de cinzas volantes. Universidade de Trás-os-Montes e Alto Douro Escola de Ciências e Tecnologia .
Pourakbar, S.; Asadi, A.; Huat, B. B. K.; Cristelo, N.; Fasihnikoutalab, M. H. (2017). Application of Alkali-Activated Agro-Waste Reinforced with Wollastonite Fibers in Soil Stabilization, Journal of Materials in Civil Engineering, 29(2), p. 04016206. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001735
Ridley, A. M.; Burland, J. B. (1993). A new instrument for the measurement of soil moisture suction. Géotechnique, 43(2), pp. 321–324. https://doi.org/10.1680/geot.1993.43.2.321
Rios, S.; Viana da Fonseca, A.; Baudet, B. A. (2013). On the shearing behaviour of an artificially cemented soil. Acta Geotechnica, 9(2), pp. 215–226.
http://dx.doi.org/10.1007/s11440-013-0242-7
Rios, S.; Cristelo, N.; Viana da Fonseca, A.; Ferreira, C. (2016). Structural performance of alkali-activated soil ash versus soil cement. Journal of Materials in Civil Engineering, 28(2): 04015125. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0001398
Rios, S.; Cristelo, N.; Miranda, T.; Araújo, N.; Oliveira, J.; Lucas, E. (2018). Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road Materials and Pavement Design, 19(1), pp. 201–222.
http://dx.doi.org/10.1080/14680629.2016.1251959
Rodrigues, C.; Rodrigues, P.; Cruz, N.; Rios, S.; Viana da Fonseca, A. (2016). Estabilização de solos com geopolímeros para camadas de leito de estradas. in 15º Congresso Nacional de Geotecnia e 8º Congresso Luso-Brasileiro de Geotecnia.
Rodríguez, E. D.; Bernal, S.; Provis, J.; Paya, J.; Monzo, J.; Borrachero, M. (2013). Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cement and Concrete Composites, 35(1), pp. 1–11.
http://dx.doi.org/10.1016/j.cemconcomp.2012.08.025
Silva, M. C. A. da (2016). Melhoramento de um solo argiloso com recurso à ativação alcalina de resíduos para aplicação em infraestruturas de transporte. Dissertação de Mestrado, Universidade do Minho.
Silva, R. A.; Oliveira, D.; Miranda, T.; Cristelo, N.; Escobar, M.; Soares, E. (2013) Rammed earth construction with granitic residual soils: The case study of northern Portugal. Construction and Building Materials, 47, pp. 181–191. http://dx.doi.org/10.1016/j.conbuildmat.2013.05.047
Topa Gomes, A.; Viana da Fonseca, A.; Silva Cardoso, A. (2011) Soil water characteristic curve for a granite residual soil: Experimental and numerical results, in Defect and Diffusion Forum, 312, pp. 1172–1177. https://doi.org/10.4028/www.scientific.net/DDF.312-315.1172