Incidence of controlled filling on the conservation of the Inca buildings in Cusco
DOI:
https://doi.org/10.14195/2184-8394_161_1Keywords:
Inca buildings, foundations, controlled infillsAbstract
Worldwide, human settlements located on hillsides or esplanades are easily devastated by various adverse factors. However, buildings of the Inca period, in Cusco - Peru, are preserved standing for more than five centuries. What did the Incas do for the perennial preservation of their buildings? There is a lack of knowledge. For this reason, we seek to evaluate the Inca Controlled Infill (ICF), and its impact on the conservation of buildings in Machupicchu, Pisaq and Saqsaywaman. The study analyzes the foundation soils. Non-invasive equipment (Shmith Hammer-MSh and Dynamic Lightweight Penetrometer-DPL) was used to characterize the RCI and geotechnical competence. The results show that the buildings are located in hard rock geology, on which the RCIs were artificially built; the geotechnical parameters found are competent. The Inca probably chose competent foundation soils and improved them with RCIs to control the soil-foundation- building interaction
Downloads
References
Aboelela, A. E.; Ebid, A. M.; Fayed, A. L. (2022). Estimating the subgrade reaction at deep braced excavation bed in dry granular soil using genetic programming (GP). Results in Engineering, 13. https://doi.org/10.1016/j.rineng.2021.100328
Acharyya, R.; Dey, A. (2023). Response of Skirted Strip Footing Resting on Layered Granular Soil Using 2-D Plane-Strain Finite Element Modeling. Geotechnical and Geological Engineering, 41(3), 2185–2200. https://doi.org/10.1007/s10706-022-02373-6
Adam, J. M.; Buitrago, M. (2018). Learning from failures in an emblematic building in Valencia, Spain. Engineering Failure Analysis, 92, 418–429.
https://doi.org/10.1016/j.engfailanal.2018.06.023
Astete, F.; Bastante, J. M. (2020). Machupicchu investigaciones interdisciplinarias: Vol. I (F. Astete & J. Bastante, Eds.). Ministerio de Cultura. Perú.
Ates, B.; Sadoğlu, E. (2022). Experimental and Numerical Investigation of Load Sharing Ratio for Piled Raft Foundation in Granular Soils. KSCE Journal of Civil Engineering, 26(4), 1662–1673. https://doi.org/10.1007/s12205-022-1022-4
Bieniawski, Z. T. (1989). Rock Mass Classifications A Complete Manual for Engineers and Geologists in Mining, Civil and Petroleum Engineering. Wiley.
Bouchard, J.-F.; Usselmann, P.; Carlotto, V. (1992). Machu Picchu : problemas de conservación de un sitio inca de ceja de selva. Bulletin de l’Institut Français d’études Andines, 21(3), 905–927. https://doi.org/10.3406/bifea.1992.1092
Carlotto, V.; Cárdenas, J.; Fidel, L. (2009). La geología, evolución geomorfológica y geodinámica externa de la ciudad Inca de Machupicchu, Cusco-Perú. In Revista de la Asociación Geológica Argentina (Vol. 65, Issue 4).
Carocci, C. F.; Macca, V.; Tocci, C. (2021). The roots of the 18th century turning point in earthquake-resistant building. In History of Construction Cultures (pp. 623–630). CRC Press. https://doi.org/10.1201/9781003173434-193
Chen, W.; Liu, Q.; Wang, E. (2022). The Effect of the Water Table on the Bearing Capacity of a Shallow Foundation. Applied Sciences (Switzerland), 12(13).
https://doi.org/10.3390/app12136571
Foraboschi, P.; Vanin, A. (2014). Experimental investigation on bricks from historical Venetian buildings subjected to moisture and salt crystallization. Engineering Failure Analysis, 45, 185–203. https://doi.org/10.1016/j.engfailanal.2014.06.019
Jaramillo Morilla, A.; Mascort-Albea, E. J.; Romero-Hernández, R.; Soriano-Cuesta, C. (2022). Climate change impacts on cultural heritage building foundations in Western Andalusia. Geotechnical Engineering for the Preservation of Monuments and Historic Sites III Symposium, 2022, 1079–1087. https://doi.org/10.1201/9781003308867-85
Juárez, E.; Rico, A. (2005). Mecánica de Suelos: Vol. Tomo I. Editorial LIMUSA.
Keawsawasvong, S.; Thongchom, C.; Likitlersuang, S. (2021). Bearing Capacity of Strip Footing on Hoek-Brown Rock Mass Subjected to Eccentric and Inclined Loading. Transportation Infrastructure Geotechnology, 8(2), 189–202. https://doi.org/10.1007/s40515-020-00133-8
Krentowski, J.; Chyzy, T.; Dunaj, P. (2017). Sudden collapse of a 19th-century masonry structure during its renovation process. Engineering Failure Analysis, 82, 540–553. https://doi.org/10.1016/j.engfailanal.2017.04.010
Kuroiwa, J. (2016). Manual para la Reducción del Riesgo Sísmico de Viviendas en el Perú. Ministerio de Vivienda, Ed.; Primera edición).
Lambe, T.; Whitman, R. (2004). Mecánica de Suelos: Vol. I (LIMUSA, Ed.).
Ma, X.; Lei, H.; Kang, X. (2023). Examination of interface roughness and particle morphology on granular soil–structure shearing behavior using DEM and 3D printing. Engineering Structures, 290. https://doi.org/10.1016/j.engstruct.2023.116365
Mendoza, C.; Ruge, J. C.; Caicedo, B. (2018). The geological history analysis of the friction angle in transported soils and their importance in the bearing capacity of shallow foundations. Revista Internacional de Métodos Numéricos Para Cálculo y Diseño En Ingeniería, 34. https://doi.org/10.23967/j.rimni.2017.8.003
Ministerio de Cultura – (MINCUL) (2015). Plan Maestro del Santuario Histórico de Machupicchu 2015 - 2019: Vol. I.
https://www.culturacusco.gob.pe/dmdocuments/machupicchu/PMSHM_DISENO_CONSOLIDADO.pdf