Experimental study on the breakage of porous grains under random loads: proposal for a probabilistic breakage criterion
DOI:
https://doi.org/10.14195/2184-8394_163_3Keywords:
grain breakage, lightweight expanded clay aggregate, WeibullAbstract
In this article, a breakage probabilistic criterion for expanded clay grains is presented. Expanded clay is a material formed by porous grains that can collapse under isocompression pressures. The criterion for breaking is that proposed by Serrano et al. (2016) for collapsible volcanic materials such as pyroclasts and allows considering grain breakage for any possible loading situation, including traction and compression. This proposed model is an advance over other models that consider simpler loading situations. To validate the model, more than 1,300 expanded clay grains have been broken in uniaxial, biaxial and triaxial compression (measuring all applied forces). In addition to breaks in direct traction. The proposed model can be easily implemented using the discrete element method (DEM) code and would allow simulating the failure of
materials with double porosity (porosity inside the grain and intergranular porosity), which can collapse only with pressure, a situation that occurs in expanded clay fills subjected to loads. of a certain magnitude.
Downloads
References
AENOR (2022). UNE-EN ISO 20501:2022 Cerámicas técnicas (cerámica avanzada, cerámica técnica avanzada). Estadísticas de Weibull para datos de resistencia (ISO 20501:2019). UNE. Associação Espanhola de Normalização e Certificação.
ASTM (2018). C1239-13(2018) Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. American Society for Testing and Materials.
Ben-Nun, O.; Einav, I. (2010). The role of self-organization during confined comminution of granular materials. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1910), pp. 231-247. https://doi.org/10.1098/rsta.2009.0205
Conde Placidos, M. M. (2013). Caracterización geotécnica de materiales volcánicos de baja densidad, Universidad Complutense de Madrid.
Estaire, J.; Santana, M. (2018). Large direct shear tests performed with fresh ballast. In: Stark, Timothy D.: Swan J. R., Robert H. and Szecsy R., eds, Railroad Ballast Testing and Properties. ASTM International, pp. 144-161.
Garcia Wolfrum, S. (2005). Anclajes en roca. Universidad Politécnica de Madrid.
Kwok, C. Y.; Bolton, M. D. (2013). DEM simulations of soil creep due to particle crushing. Géotechnique, 63(16), pp. 1365-1376. https://doi.org/10.1680/geot.11.P.089
Lade, P. V. (2016). Triaxial testing of soils. John Wiley & Sons.
Li, X.; Lv, Y.; Su, Y.; Zou, K.; Wang, Y.; Huang, W. (2023). Coupling effects of morphology and inner pore distribution on the mechanical response of calcareous sand particles. Journal of Rock Mechanics and Geotechnical Engineering, 15(6), pp. 1565-1579. https://doi.org/10.1016/j.jrmge.2022.09.017
Lv, Y.; Li, X.; Fan, C.; Su, Y. (2021). Effects of internal pores on the mechanical properties of marine calcareous sand particles. Acta Geotechnica, 16(10), pp. 3209-3228. https://doi.org/10.1007/s11440-021-01223-8
Ma, C.; Zhu, C.; Qu, R.; Liu, H.; Wang, T. (2023). Influence of the particle morphology and internal porosity characteristics of coral sand in the South China Sea on its limit void ratio. Powder Technology, 428, pp. 118771. https://doi.org/10.1016/j.powtec.2023.118771
McDowell, G. R.; Amon, A. (2000). The application of Weibull statistics to the fracture of soil particles. Soils and Foundations, 40(5), pp. 133-141. https://doi.org/10.3208sandf.40.5_133
McDowell, G. R., de Bono, J. P., Yue, P.; Yu, H. (2013). Micro mechanics of isotropic normal compression. Géotechnique Letters, 3(4), pp. 166-172. https://doi.org/10.1680geolett.13.00050
Ovalle, C.; Frossard, E.; Dano, C.; Hu, W.; Maiolino, S.; Hicher, P. (2014). The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data. Acta Mechanica, 225(8), pp. 2199-2216. https://doi.org/10.1007/s00707-014-1127-z
Perras, M. A.; Diederichs, M. S. (2014). A review of the tensile strength of rock: concepts and testing. Geotechnical and Geological Engineering, 32, pp. 525-546. https://doi.org/10.1007/s10706-014-9732-0
Pinto, A. A. V. (1983). Previsão do comportamento estrutural de barragens de enrocamento. Laboratório Nacional de Engenharia Civil, Lisboa, Portugal.
Prisco, C. D. (2007). Applicazioni geotecniche e caratterizzazione meccanica dell'argilla espansa Leca. Bregnano (Co), Italia: Leca.
Roces-Alonso, E. A.; González-Galindo, J.; Estaire, J. (2021). Experimental study on grain failure of lightweight expanded clay aggregate under uniaxial and biaxial load conditions. Powder Technology, 383, pp. 542-553. https://doi.org/10.1016/j.powtec.2021.01.052
Roces-Alonso, E. A.; Muñiz-Menendez, M.; González-Galindo, J.; Estaire, J. (2021). Usos geotécnicos de la arcilla expandida (Geotechnical uses of lightweight expanded clay aggregate). Ingeniería Civil - CEDEX, 197(1).
Rothenburg, L. (1981). Micromechanics of idealized granular systems, Ottawa Canada.
Russel, A. R.; Wood, D. M. (2009). Point load tests and strength measurements for brittle spheres. International Journal of Rock Mechanics and Mining Sciences, 46(2), pp. 272-280. https://doi.org/10.1016/j.ijrmms.2008.04.004
Serrano, A. (2004). Mecánica de las Rocas II: Propiedades de las Rocas. Sexta edición edn. Madrid: ETSI Caminos, Canales y Puertos.
Serrano, A.; Perucho, A.; Conde, M. (2016). Yield criterion for low-density volcanic pyroclasts. International Journal of Rock Mechanics and Mining Sciences, 100(86), pp. 194-203. https://doi.org/10.1016/j.ijrmms.2016.04.014
Tsoungui, O.; Vallet, D.; Charmet, J. (1999). Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technology, 105(1-3), pp. 190-198. https://doi.org/10.1016/S0032-5910(99)00137-0
Uriel, S.; Serrano, A. A. (1975). Geotechnical properties of two collapsible volcanic soils of low bulk density at the site of two dams in Canary Islands-Spain. Proceedings of the Eight International Conference on Soil Mechanics and Foundation Engineering, Moscow, V2.2, 1973, pp. 257–264.
Wang, X.; Jiao, Y.; Wang, R.; Hu, M.; Meng, Q.; Tan, F. (2011). Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea. Engineering Geology, 120(1-4), pp. 40-47. https://doi.org/10.1016/j.enggeo.2011.03.011
Weber, J. (1966). Recherches concernant les contraintes intergranulaires dans les milieux pulvérulents. Bulletin de Liaison des Ponts-et-chaussées, 20, pp. 1-20.
Wong, T.; Baud, P. (2012). The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44, pp. 25-53. https://doi.org/10.1016/j.jsg.2012.07.010
Wood, D. M. (1990). Soil behaviour and critical state soil mechanics. Cambridge University Press.