Shear lab tests to determine residual shear strength of overconsolidated clays
DOI:
https://doi.org/10.24849/j.geot.2020.150.03Keywords:
residual shear strength, overconsolidated clays, shear lab testsAbstract
During landslides of overconsolidated clay soils, the strength that really acts in discontinuities, shear zones, fissures, and clay reorientation zones is the residual shear strength. The strength parameters achieved through different shear strength lab tests and by means of back analysis, considered to be the most reliable value along the failure surface, are compared in this research. Thus, the lab test that can be used to provide the strength values more similar to the ones obtained by back-analysis is ascertained. Thanks to the high effective stresses applied in the tests, a new range of brittleness indexes of the material studied is included. Additionally, an alternative ring shear test procedure is proposed, combining the methods proposed
in the European (EN ISO 17892-10:2018), British (BS 1377-7:1990) and north American (ASTM D6467-
06a:2006) standards
Downloads
References
Alonso, E. (2005). Parámetros de resistencia en cálculos de estabilidad. VI Simposio Nacional sobre Taludes y Laderas Inestables, Valencia, pp. 1-65.
Alonso, E. E.; Gens, A. (2006). Aznalcóllar dam failure. Part 1: Field observations and material properties. Géotechnique, 56 (3): 165-183.
ASTM D6467-06a (2006). Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils, ASTM International, West Conshohocken, PA
Bishop, A.W. (1967). Progressive failure: with special reference to the mechanism causing it. Panel discussion. Proceeding Geotechnical Conference. Oslo. Vol. 2. p. 152
Bishop, A.W. (1971). The influence of progressive failure on the choice of the method of stability analysis. Géotechnique (Technical Notes), 21 (2): 168-172.
Bishop, A. W.; Green, G. E.; Garga, V. K., Andresen, A.; Brown J. D. (1971). A new ring shear test apparatus and its application to the measurement of residual strength. Géotechnique, 21 (4): 273-328.
Bjerrum, L. (1967). Progressive failure in slopes of overconsolidated plastic clay and clay shales. Journal of Soil Mechanics & Foundations Div., ASCE, 93: 3-49
BS 1377-7:1990. Methods of test for soils for civil engineering purposes. Shear strength tests (total stress): 6. Determination of residual strength using the small ring shear apparatus.
Cripps, J. C.; Taylor, R. K. (1981). The Engineering properties of mudrocks. Quarterly Journal of Engineering Geology, London, 14, pp.325-346.
EN ISO 17892-10 (2018). Geotechnical investigation and testing - Laboratory testing of soil - Part 10: Direct shear tests.
Feda, J. (1992). Creep of soils and related phenomena. Elsevier, New York, 423 pp.
Fernández Blanco, S. (1979). Estudio de las propiedades geotécnicas de las Arcillas Azules del Guadalquivir con especial aplicación a la estabilidad de los taludes a largo plazo. Tesis Doctoral. Universidad Politécnica de Madrid.
Galera, J. M.; Checa, M.; Pérez, C.; Williams, B.; y Pozo, V. (2009). Caracterización de detalle de las margas azules del Guadalquivir mediante ensayos in situ y de laboratorio. Ingeopres, 186: 16-22.
González de Vallejo, L. I.; Ferrer, M.; Ortuño, L.; Oteo, C. (2002). Ingeniería geológica. Pearson Educación, 744 pp.
ISRM (1981). Suggested methods for rock characterization, testing and monitoring. ISRM. Suggested methods. Ed. E.T. Brown. Pergamon Press.
Kenney, T. C. (1977). Residual strength of mineral mixtures. Proceedings of 10th International Conference Soil Mechanics Fndn. Engineering, 1, pp 155-160.
Moore, R. (1991). The chemical and mineralogical controls upon the residual strength of pure and natural clays. Geotechnique, 41 (1): 35-47.
Olalla, C., Cuéllar, V. (2001). Failure mechanism of the Aznalcóllar Dam, Seville, Spain. Géotechnique, 51 (5): 399-406.
Olson, R. E. (1974). Shearing strengths of kaolinite, illite and montmorillonite. Journal of Geotechnical and Geoenviromental Engineering, ASCE. 102: 2215-2229.
Oteo, C. S.; García de la Oliva, J. L. (1995). Contribución a la caracterización geotécnica de las margas españolas (versión española). Simposio “Craies et Schistes”, Bruselas.
Oteo, C. S. (1997). La inestabilidad de taludes y desmontes en el entorno de las obras lineales andaluzas. IV Simposio nacional sobre taludes y laderas inestables. Granada
Oteo, C. S. (1998). Las Margas Azules del Guadalquivir y la inestabilidad de taludes. I Congreso Andaluz Carreteras, Granada.
Skempton, A.W. (1964). Long-term stability of clay slopes. Géotechnique, 14: 77-101.
Stark, T. D.; Vettel, J. J. (1992). Bromhead Ring Shear Test Procedure. Geotechnical Testing Journal, 15: 24-32
Tsige, M. (1998). Microfábrica y mineralogía de las Arcillas Azules del Guadalquivir: Influencia en su comportamiento geotécnico. Tesis Doctoral. Universidad Complutense de Madrid.
Tsige, M; González de Vallejo, L.; Oteo, C. (2001). Mecanismo de alteración de arcillas margosas sobreconsolidadas y su relación con las propiedades ingenieriles. V Simposio Nacional sobre Taludes y Laderas Inestables. Pp. 163-175, Vol. 1. 27-30 de Noviembre de 2001, Madrid.
Zhang, M.; Yueping, Y.; Ruilin, H.; Shuren, M.; Yongshuang, Z. (2011). Ring shear test for transform mechanism of slide-debris flow. Engineering Geology, 118: 55-62.