Liquefação de solos à luz da mecânica aplicada

Autores/as

  • António Viana da Fonseca Universidade do Porto

DOI:

https://doi.org/10.14195/2184-8394_128_1

Palabras clave:

Liquefação cíclica e estática, estados críticos, ondas sísmicas

Resumen

Há uma crescente convicção da vantagem em encarar o fenómeno de liquefação de solos como passível de ser considerado como um comportamento elastoplástico que é modelável a partir de conceitos baseados em estados críticos, enquanto se reconhece que pode ocorrer num largo espectro de materiais e con dições. Estes assuntos são desenvolvidos neste artigo, atendendo a que as ferramentas de estados críticos têm sido estendidas a outros materiais para além das areias. Esta abordagem integra o conhecimento da influência que a micromecânica das partículas e dos seus contactos tem no comportamento dos solos, e tem em conside ração os efeitos da quebra progressiva das partículas e as alterações do grau de uniformidade dos solos no de curso do carregamento. Os objetivos do dimensionamento com base em comportamento são apresentados à luz de ensaios em laboratório e de campo que permitem identificar o risco de se espoletar o fenómeno de lique fação, tanto em condições cíclicas, como estáticas. Também será discutida a forma como os resultados desses ensaios podem ser interpretados para se poder prever o fenómeno, à luz de uma abordagem mecânica global.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Airey, D.W. (1993). Triaxial testing of a naturally cemented carbonate soil. J. Geotech. Engng. Div., ASCE, 119 (9): 1379-1398.

Altuhafi, F.; Coop, M.R. (2011). Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6): 459-471.

Altuhafi, F.; Baudet, B.A; Sammonds, P. (2011). On the particle size distribution of a basaltic till. Soils and Foundations, 51 (1): 113-121.

Andrus, R.D.; Stokoe, K.H., II. (2000). Liquefaction resistance of soils from shear-wave velocity. J. Geotech. & Geoenviron. Engng. ASCE, 126 (11): 1015-1025.

Arthur, J.R.F.; Bekenstein, S.; Germaine, J.T.; Ladd, C.C. (1981). Stress path tests with controlled rotation of principal stress directions. Laboratory Shear Strength of Soil, ASTM STP 740. R.N. Yong, F.C. Townsend (Eds.), ASTM, 516-540.

Bandini, V.; Coop, M.R. (2011). The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations. 51 (4): 591-600.

Baxter, C.D.P.; Bradshaw, A.S.; Green, R.A.; Wang, J.H. (2008). Correlation between cyclic resis tance and shear-wave velocity for Providence silts. J. Geotech. & Geoenviron. Engng. ASCE, 134 (1): 37-46.

Bedin, J. (2010). Study of the geomechanical behaviour of mining wastes. PhD Thesis in Civil Engineering, Federal University of Rio Grande do Sul (in Portuguese).

Bedin, J.; Schnaid, F.; Viana da Fonseca, A.; Costa-Filho, L. de M. (2011). Gold tailings liquefac tion under critical state soil mechanics. Géotechnique, 62 (3): 263-267.

Been, K.; Jefferies, M.G. (1985). A state parameter for sands. Géotechnique, 35 (2): 99-112.

Been, K.; Jefferies, M.G. (1986). A state parameter for sands: reply to discussion. Géotechnique, 36 (1): 123-132.

Been, K.; Crooks, J.H.A.; Becker, D.E.; Jefferies, M.G. (1986). The cone penetration test in sands: Part I, state parameter interpretation. Géotechnique, 36 (2): 239-249.

Been, K.; Jefferies, M.G.; Hachey J. (1991). The critical state of sands. Géotechnique, 41 (3): 365-381.

Bishop, A.W. (1971). Shear strength parameters for undisturbed and remoulded soil specimens. Stress-strain Behaviour of Soils: Proc. Roscoe Memorial Symposium, Cambridge (ed. R.H.G. Parry). Foulis, 3-58.

Bishop, A.W. (1973). The stability of tips and spoil heaps. Quarterly Journal of Engineering Geology, 6, 335-376.

Boulanger, R.W.; Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. J. Geotech. & Geoenviron. Eng., ASCE, 132 (11): 1413-1426.

Boulanger, R.W.; Idriss, I. M. (2008). Liquefaction susceptibility criteria for silts and clays (Closure to discussion). J. Geotech. & Geoenviron. Eng., ASCE, 134 (7): 1027-1028.

Boulanger, R.W.; Idriss, I. M. (2011). Cyclic failure and liquefaction. Keynote lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Vol. of KNL, 137-159.

Bray, J.D.; Sancio, R.B. (2006). Assessment of liquefaction susceptibility of fine-grained soils. J. Geotech. & Geoenviron. Eng., ASCE 132 (9): 1165-1177.

Bray, J.D.; Sancio, R.B. (2008). Closure to Assessment of liquefaction susceptibility of fine-grained soils. J. Geotech. & Geoenviron. Eng., ASCE, 134 (7): 1031-1034.

Carrera, A.; Coop, M.R.; Lancellotta, R. (2011). Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique, 61 (11): 935-946.

Chandler, R.J; Tosatti, G. (1995). The Stava tailings dams failure, Italy, July 1985. Proc. Inst. Civ. Engrs., Geotech. Engng. 113, 67-79.

Chaney, R. (1978). Saturation effects on the cyclic strength of sand. Proc. ASCE special conference on earthquake engineering and soil dynamics, 342-359.

Chang, N.; Heymann, G.; Clayton, C.R.I., (2011). The effect of fabric on the behaviour of gold tailings. Géotechnique, 61 (3): 187-197.

Cheng, Y.P.; Nakata, Y.; Bolton, M.D. (2005). Grain crushing and critical states observed in DEM simulations. Powders and Grains, Taylor & Francis, London, 2: 1393-1397.

Chu, J.; Leong, W.K. (2002). Effect of fines on instability behaviour of loose sands. Géotechnique, 52 (10): 751-755.

Coop, M.R. (1990). The mechanics of uncemented carbonate sands. Géotechnique, 40 (4): 607-626.

Coop, M.R.; Lee, I.K. (1993). The behaviour of granular soils at elevated stresses. Predictive Soil Mechanics, Thomas Telford, London, 186-198.

Coop, M.R.; Wilson, S.M. (2003). On the behaviour of hydrocarbon reservoir sands and sandstones. J. Geotech. Engng. ASCE, 129 (11): 1010-1019.

Coop, M.R.; Klotz, E.U; Clinton, L. (2005). The influence of the in situ state of sands on the load deflection behaviour of driven piles. Géotechnique, 55 (10): 721-730.

Coop, M.R.; Sorensen, K.K.; Bodas Freitas, T.; Georgoutsos, G. (2004). Particle breakage during shearing of a carbonate sand. Géotechnique, 54 (3): 157-163.

Cresswell, A.; Powrie, W. (2004). Triaxial tests on an unbonded locked sand. Géotechnique, 54 (2): 107-115.

Cuccovillo, T.; Coop, M.R. (1999). On the mechanics of structured sands. Géotechnique, 49 (6): 741-760.

Ferreira, P.M.V.; Bica, A.V.D. (2006). Problems on the identification of structure in a soil with a transitional behaviour. Géotechnique, 56 (7): 445-454.

Hardin, B.O. (1985). Crushing of soil particles. J. Geotech. Engng. ASCE, 111 (10): 1177-1192. 31

Huang, A.-B.; Chang, W.-J. (2011). Geotechnical and geophysical site characterization oriented to seismic analysis. Keynote Lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Vol. of KNL.

Idriss, I.M.; Boulanger, R.W. (2004). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Proceedings 11th Int. Conf. on Soil Dynamics and Earthquake Engineering. Berkeley, 32-56.

Idriss, I.M.; Boulanger, R.W. (2008). Soil Liquefaction during Earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute. Oakland, CA.

IPQ (2009). Eurocódigo 7: Projeto geotécnico. Parte 1: Regras gerais. Versão Portuguesa da Norma Europeia EN 1997-1:2004 + AC:2009. ratificadas pelo CEN em 2004-04-23 e 2009-02-18, Bruxelles: European Comission. Instituto Português da Qualidade, Lisboa.

Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Géotechnique, 43 (3): 351-415.

Ishihara, K.; Tsuchiya, H.; Huang, Y.; Kamada, K. (2001). Recent studies on liquefaction resistance of sand - effect of saturation. Keynote Lecture, Proc. of the 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.

Jang, D.-J.; Frost, J.D. (1998). Sand structure differences resulting from specimen preparation procedures. Proc. of the Specialty Conf. on Geotechnical Earthquake Engineering and Soil Dynamics, Seattle, Wash., ASCE, Vol. 1, 234-245.

Jefferies, M. G. (1993). Nor-Sand: A simple critical state model for sand. Géotechnique, 43 (1): 91-103.

Jefferies, M.G.; Shuttle, D.A. (2002). Dilatancy in general Cambridge-type models. Géotechnique, 52(9): 625-638.

Jefferies, M.G.; Shuttle, D.A. (2005). Norsand: features, calibration and use. Proc. ASCE Geo- -Institute Geo-Frontiers Conference, Austin, Texas , January 24-26, 2005. Geotech. Special Pub. No. 128, Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 204-236, J.A. Yamamuro e V.N. Kaliakin (Eds.).

Jefferies, M.G.; Shuttle, D.A. (2011). Understanding liquefaction through applied mechanics. Theme Lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Special Vol. of KNL, 517-549.

Jefferies, M.G.; Been, K. (2006). Soil liquefaction: A critical state approach. Taylor and Francis, Abingdon.

Klotz, E.U; Coop, M.R. (2001). An investigation of the effect of soil state on the capacity of driven piles in sands. Géotechnique, 51 (9): 733-751.

Kokusho, T. (2000). Correlation of pore-pressure B-value with P-wave velocity and Poisson’s ratio for imperfectly saturated sand or gravel. Soils and Foundations, 40 (4): 95-102.

Konrad, J.M. (1998). Sand state from cone penetrometer tests: a framework considering grain crushing stress. Géotechnique, 48 (2): 201-215.

Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Inc., Upper Saddle. 653 pp. New Jersey, USA.

Lade P.V.; Yamamuro, J.A. (1997). Effects of nonplastic fines on static liquefaction of sands. Canadian Geotech. J., 34, 918-928.

Lade P.V.; Pradel, D. (1990). Instability and plastic flow of soils, I: Experimental observations. J. Eng. Mech., ASCE, 116 (11): 2532-2550.

Lade, P.V; Yamamuro, J.A. (1996). Undrained sand behaviour in axisymmetric tests at high pressures. J. Geotech. & Geoenviron. Engng. ASCE. 122 (2): 120-129.

Lade, P.V.; Yamamuro, J.A; Liggio, C.D. (2009). Effects of fines content on void ratio, compres sibility, and static liquefaction of silty sand. Geomechanics and Engineering, 1 (1): 1-15.

Lagioia, R.; Nova, R. (1995). An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 45 (4): 633-648.

Leon, E.; Gassan, S.L; Talwsani, P. (2006). Accounting for soil aging when assessing liquefaction potential. J. Geotech. & Geoenviron. Engng. ASCE, 132 (3): 363-377.

Martins, F.; Bressani, L.A.; Coop, M.R.; Bica, V.D. (2002). Some aspects of the compressibility behaviour of a clayey sand. Canadian Geotech. J., 38 (6), 1177-1186.

McDowell, G.R; Bolton, M.D. (1998). On the micro mechanics of crushable aggregates. Géo technique, 48 (5): 667-679.

Mitchell, J.K. (1976). Fundamentals of Soil Behaviour. John Wiley & Sons, New York.

Moss, R.E.S.; Seed, R.B; Kayen, R.E. (2006a). CPT based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J. Geotech. & Geoenviron. Engng. ASCE, 132 (8): 1032-1051.

Moss, R.E.S.; Seed, R.B; Olsen, R.S. (2006b). Normalizing the CPT for overburden stress. J. Geotech. & Geoenviron. Engng. ASCE, 132 (3): 378-387.

Muir Wood, D. (2008). Critical states and soil modelling. In Deformational Characteristics of Geomaterials, Burns, Mayne & Santamarina (Eds.): IOS Press, 51-72.

Nicholson, D.; Chapman, T; Morrison, P. (2002). Pressuremeter proves its worth in London’s Docklands. Ground Engng., 35 (3): 32-34.

Nocilla, A.; Coop, M.R; Colleselli, F. (2006). The mechanics of an Italian silt; an example of ‘transitional’ behaviour. Géotechnique 56 (4): 261-271.

Nougier-Lehon, C.; Vincens, E.; Cambou, B (2005). Structural changes in granular materials: the case of irregular polygonal particles. Int. J. Solids & Structures 42 (24-25): 6356-6375.

Pestana, J.M.; Whittle, A.J. (1995). A compression model for cohesionless soils. Géotechnique, 45 (4): 611-631.

Qadimi, A; Coop, M.R. (2007). The undrained cyclic behaviour of a carbonate sand. Géotechnique, 57 (9), 739-750.

Robertson, P.K. (2009). CPT interpretation – a unified approach. Canadian Geotech. J., 46 (11): 1337-1355.

Robertson, P.K. (2010). Estimating in-situ state parameter and friction angle in sandy soils from CPT. Proc. of 2nd International Symposium on the CPT, TC102-16 ISSMGE, California, 2: 471-478.

Robertson, P.K; Wride, C.E. (1998). Evaluating cyclic liquefaction potential using the cone pene tration test. Canadian Geotech. J., 35(3): 442-459.

Schneider, J.A; Moss, R.E.S. (2011). Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. Géotechnique Letters, published online doi: 10.1680/geolett.11.00021.

Seed, H. B.; Tokimatsu, K.; Harder L.F.Jr.; Chung, R. (1984). The influence of SPT procedures in soil liquefaction resistance evaluations. Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/EER–84/15.

Sherif, M.A.; Ishibashi, I; Tsuchiya, C. (1977). Saturation effect on initial soil liquefaction, J. Geotech. Engng. Div., ASCE, 103: 914-917.

Shuttle, D.A.; Cunning, J. (2007). Liquefaction potential of silts from CPTu. Canadian Geotech. J., 44: 1-19.

Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4 (4): 143-147.

Sladen, J.A.; D’Hollander, R.D.; Krahn, J. (1985). Back analysis of the Nerlerk berm liquefaction slides. Canadian Geotech. J., 22: 579-588.

Tatsuoka, F.; Ochi, K.; Fujii, S.; Okamoto, M. (1986). Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soil and Foundations, 26 (3): 23-41.

Thevanayagam, S.; Mohan, S. (2000). Intergranular state variables and stress-strain behaviour of silty sands. Géotechnique, 50 (1): 1-23.

Thevanayagam, S.; Shemtham, T.; Mohan, S.; Liang, J. (2002). Undrained fragility of clean sands, silty sands and sandy silts. J. Geotech Geoenvir. Engrg., ASCE, 128 (10): 849-859.

Tokimatsu, K.; Yoshimi, Y. (1983). Empirical correlation of soil liquefation based on SPT N-value and fines content. Soils and Foundations, 23 (4): 56-74.

Vaid, Y.P.; Sivathayalan, S. (1996). Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Canadian Geotech. J., 33: 281-89.

Ventouras, K.; Coop, M.R. (2009). On the behaviour of Thanet sand: an example of an uncemented natural sand. Géotechnique, 59 (9): 727-738.

Verdugo, R.; Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations, 36 (2): 81-91.

Viana da Fonseca, A. (2012). Modelo Unificado em Ensaios Penetrométricos à luz de Estados Críticos. Da Prática à Teoria ou da Teoria à Prática. Conferência especial do V Geojovem, Simp. Brasileiro Jovens Geotécnicos, COBRAMSEG2012, 12º Cong. Bras. Mec. Solos e Eng. Geot., Porto de Galinhas, PE, Brasil; Vol. Único, pp. 50-69 & CD. ABMS, São Paulo.

Viana da Fonseca, A.; Carvalho, J.; Ferreira, C.; Santos, J. A.; Almeida F.; Pereira, E.; Feliciano, J.; Grade, J.; Oliveira, A. (2006). Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing technique. Geotech. and Geological Engineering, 24 (5): 1307- 1348.

Viana da Fonseca, A.; Coop, M.T.; Fahey, M.; Consoli, N. (2011). The interpretation of conventional and non-conventional laboratory tests for challenging geotechnical problems. Keynote Lecture IS’Seoul, in ‘Deformation Characteristics of Geomaterials’, 1: 84-119. IOS Press, Amsterdam.

Vieira Faria, N.; Viana da Fonseca, A.; Ferrreira, C. (2006). Processo de saturación de ensayos triaxiales. Geotecnia, 104: 31-42, SPG, Lisboa.

Wood, F.M.; Yamamuro, J.A.; Lade, P.V. (1998). Effect of depositional method on the undrained response of silty sand. Canadian Geotech. J., 45 (11): 1525-1537.

Wroth, C.P.; Bassett, R.H. (1965). A stress-strain relationship for the shearing behaviour of a sand. Géotechnique, 15 (1): 32-56.

Yamamuro, J.A.; Covert, K.M. (2001). Monotonic and cyclic liquefaction of very loose sands with high silt content. J. Geotech. & Geoenviron. Engng. ASCE, 127 (4): 314-324.

Yamamuro, J.A.; Lade, P.V. (1998). Steady-state concepts and static liquefaction of silty sands. J. Geotech. & Geoenviron. Engng. ASCE, 121 (9): 868-877.

Yamamuro, J.A.; Wood, F.M.; Lade, P.V. (1998). Effect of depositional method on the microstructure of silty sand. Canadian Geotech. J., 45 (11): 1538-1555.

Yang, J. (2002). Non-uniqueness of flow liquefaction line for loose sand. Géotechnique, 52 (10): 757-760.

Yang, J.; Sato, T. (1998). On the velocity and damping of elastic waves in nearly saturated soils. Proc. 33rd Japan Nat. Conf. Geotech. Engng., 1157-1158.

Yang, J.; Sato, T. (2001). Analytical study of saturation effects on seismic vertical amplification of a soil layer. Géotechnique, 51 (2): 161-165.

Yang, J.; Sze, H.Y. (2011). Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique, 61 (1): 59-73.

Yoshimi, Y.; Tanaka, K; Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils & Foundations, 29: 157-162.

Yoshimi, Y.; Tokimatsu, K.; Ohara, J. (1994). In situ liquefaction resistance of clean sands over a wide density range. Géotechnique, 44 (3): 479-494.

Yoshimine, M.; Ishihara, K.; Vargas, W. (1998). Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils and Foundations, 38 (3): 179-188.

Youd, T.L.; Idriss, I.M.; Andrus, R.D. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. & Geoenviron. Engng. ASCE, 127 (10): 817-833.

Yu, H.S.; Schnaid, F.; Collins, I.F. (1996). Analysis of cone pressuremeter tests in sands. J. Geotech. & Geoenviron. Engng. ASCE, 122 (8): 623-632.

Publicado

2013-07-21

Número

Sección

Artículos