Liquefaction of soils in the light of applied mechanics
DOI:
https://doi.org/10.14195/2184-8394_128_1Keywords:
Cyclic and static liquefaction, Critical states, Seismic wavesAbstract
The advantage of looking at soil liquefaction as an elastoplastic mechanical behaviour that is well modelled by critical state concepts is well accepted, while recognising that it takes places in a wide range of materials and conditions. These issues are outlined in this paper, as the critical state framework has now been extended to other materials apart from sands. This approach integrates the knowledge of the influence of the micromechanics of particles and their contacts on the observed behaviour, and takes into account the effects of continued particle breakage and change in uniformity. The objectives of performance-based design are presented in the light of laboratory and field tests that permit to identify the risk of triggering both cyclic and static liquefaction. It is also discussed how those tests can be performed and their results interpreted to predict these phenomena, under a global mechanical modelling approach.
Downloads
References
Airey, D.W. (1993). Triaxial testing of a naturally cemented carbonate soil. J. Geotech. Engng. Div., ASCE, 119 (9): 1379-1398.
Altuhafi, F.; Coop, M.R. (2011). Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6): 459-471.
Altuhafi, F.; Baudet, B.A; Sammonds, P. (2011). On the particle size distribution of a basaltic till. Soils and Foundations, 51 (1): 113-121.
Andrus, R.D.; Stokoe, K.H., II. (2000). Liquefaction resistance of soils from shear-wave velocity. J. Geotech. & Geoenviron. Engng. ASCE, 126 (11): 1015-1025.
Arthur, J.R.F.; Bekenstein, S.; Germaine, J.T.; Ladd, C.C. (1981). Stress path tests with controlled rotation of principal stress directions. Laboratory Shear Strength of Soil, ASTM STP 740. R.N. Yong, F.C. Townsend (Eds.), ASTM, 516-540.
Bandini, V.; Coop, M.R. (2011). The influence of particle breakage on the location of the critical state line of sands. Soils and Foundations. 51 (4): 591-600.
Baxter, C.D.P.; Bradshaw, A.S.; Green, R.A.; Wang, J.H. (2008). Correlation between cyclic resis tance and shear-wave velocity for Providence silts. J. Geotech. & Geoenviron. Engng. ASCE, 134 (1): 37-46.
Bedin, J. (2010). Study of the geomechanical behaviour of mining wastes. PhD Thesis in Civil Engineering, Federal University of Rio Grande do Sul (in Portuguese).
Bedin, J.; Schnaid, F.; Viana da Fonseca, A.; Costa-Filho, L. de M. (2011). Gold tailings liquefac tion under critical state soil mechanics. Géotechnique, 62 (3): 263-267.
Been, K.; Jefferies, M.G. (1985). A state parameter for sands. Géotechnique, 35 (2): 99-112.
Been, K.; Jefferies, M.G. (1986). A state parameter for sands: reply to discussion. Géotechnique, 36 (1): 123-132.
Been, K.; Crooks, J.H.A.; Becker, D.E.; Jefferies, M.G. (1986). The cone penetration test in sands: Part I, state parameter interpretation. Géotechnique, 36 (2): 239-249.
Been, K.; Jefferies, M.G.; Hachey J. (1991). The critical state of sands. Géotechnique, 41 (3): 365-381.
Bishop, A.W. (1971). Shear strength parameters for undisturbed and remoulded soil specimens. Stress-strain Behaviour of Soils: Proc. Roscoe Memorial Symposium, Cambridge (ed. R.H.G. Parry). Foulis, 3-58.
Bishop, A.W. (1973). The stability of tips and spoil heaps. Quarterly Journal of Engineering Geology, 6, 335-376.
Boulanger, R.W.; Idriss, I. M. (2006). Liquefaction susceptibility criteria for silts and clays. J. Geotech. & Geoenviron. Eng., ASCE, 132 (11): 1413-1426.
Boulanger, R.W.; Idriss, I. M. (2008). Liquefaction susceptibility criteria for silts and clays (Closure to discussion). J. Geotech. & Geoenviron. Eng., ASCE, 134 (7): 1027-1028.
Boulanger, R.W.; Idriss, I. M. (2011). Cyclic failure and liquefaction. Keynote lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Vol. of KNL, 137-159.
Bray, J.D.; Sancio, R.B. (2006). Assessment of liquefaction susceptibility of fine-grained soils. J. Geotech. & Geoenviron. Eng., ASCE 132 (9): 1165-1177.
Bray, J.D.; Sancio, R.B. (2008). Closure to Assessment of liquefaction susceptibility of fine-grained soils. J. Geotech. & Geoenviron. Eng., ASCE, 134 (7): 1031-1034.
Carrera, A.; Coop, M.R.; Lancellotta, R. (2011). Influence of grading on the mechanical behaviour of Stava tailings. Géotechnique, 61 (11): 935-946.
Chandler, R.J; Tosatti, G. (1995). The Stava tailings dams failure, Italy, July 1985. Proc. Inst. Civ. Engrs., Geotech. Engng. 113, 67-79.
Chaney, R. (1978). Saturation effects on the cyclic strength of sand. Proc. ASCE special conference on earthquake engineering and soil dynamics, 342-359.
Chang, N.; Heymann, G.; Clayton, C.R.I., (2011). The effect of fabric on the behaviour of gold tailings. Géotechnique, 61 (3): 187-197.
Cheng, Y.P.; Nakata, Y.; Bolton, M.D. (2005). Grain crushing and critical states observed in DEM simulations. Powders and Grains, Taylor & Francis, London, 2: 1393-1397.
Chu, J.; Leong, W.K. (2002). Effect of fines on instability behaviour of loose sands. Géotechnique, 52 (10): 751-755.
Coop, M.R. (1990). The mechanics of uncemented carbonate sands. Géotechnique, 40 (4): 607-626.
Coop, M.R.; Lee, I.K. (1993). The behaviour of granular soils at elevated stresses. Predictive Soil Mechanics, Thomas Telford, London, 186-198.
Coop, M.R.; Wilson, S.M. (2003). On the behaviour of hydrocarbon reservoir sands and sandstones. J. Geotech. Engng. ASCE, 129 (11): 1010-1019.
Coop, M.R.; Klotz, E.U; Clinton, L. (2005). The influence of the in situ state of sands on the load deflection behaviour of driven piles. Géotechnique, 55 (10): 721-730.
Coop, M.R.; Sorensen, K.K.; Bodas Freitas, T.; Georgoutsos, G. (2004). Particle breakage during shearing of a carbonate sand. Géotechnique, 54 (3): 157-163.
Cresswell, A.; Powrie, W. (2004). Triaxial tests on an unbonded locked sand. Géotechnique, 54 (2): 107-115.
Cuccovillo, T.; Coop, M.R. (1999). On the mechanics of structured sands. Géotechnique, 49 (6): 741-760.
Ferreira, P.M.V.; Bica, A.V.D. (2006). Problems on the identification of structure in a soil with a transitional behaviour. Géotechnique, 56 (7): 445-454.
Hardin, B.O. (1985). Crushing of soil particles. J. Geotech. Engng. ASCE, 111 (10): 1177-1192. 31
Huang, A.-B.; Chang, W.-J. (2011). Geotechnical and geophysical site characterization oriented to seismic analysis. Keynote Lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Vol. of KNL.
Idriss, I.M.; Boulanger, R.W. (2004). Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Proceedings 11th Int. Conf. on Soil Dynamics and Earthquake Engineering. Berkeley, 32-56.
Idriss, I.M.; Boulanger, R.W. (2008). Soil Liquefaction during Earthquakes. Monograph MNO-12, Earthquake Engineering Research Institute. Oakland, CA.
IPQ (2009). Eurocódigo 7: Projeto geotécnico. Parte 1: Regras gerais. Versão Portuguesa da Norma Europeia EN 1997-1:2004 + AC:2009. ratificadas pelo CEN em 2004-04-23 e 2009-02-18, Bruxelles: European Comission. Instituto Português da Qualidade, Lisboa.
Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Géotechnique, 43 (3): 351-415.
Ishihara, K.; Tsuchiya, H.; Huang, Y.; Kamada, K. (2001). Recent studies on liquefaction resistance of sand - effect of saturation. Keynote Lecture, Proc. of the 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California.
Jang, D.-J.; Frost, J.D. (1998). Sand structure differences resulting from specimen preparation procedures. Proc. of the Specialty Conf. on Geotechnical Earthquake Engineering and Soil Dynamics, Seattle, Wash., ASCE, Vol. 1, 234-245.
Jefferies, M. G. (1993). Nor-Sand: A simple critical state model for sand. Géotechnique, 43 (1): 91-103.
Jefferies, M.G.; Shuttle, D.A. (2002). Dilatancy in general Cambridge-type models. Géotechnique, 52(9): 625-638.
Jefferies, M.G.; Shuttle, D.A. (2005). Norsand: features, calibration and use. Proc. ASCE Geo- -Institute Geo-Frontiers Conference, Austin, Texas , January 24-26, 2005. Geotech. Special Pub. No. 128, Soil Constitutive Models: Evaluation, Selection, and Calibration, pp. 204-236, J.A. Yamamuro e V.N. Kaliakin (Eds.).
Jefferies, M.G.; Shuttle, D.A. (2011). Understanding liquefaction through applied mechanics. Theme Lecture. Proc. Int. Conf. on Earthquake Geotechnical Engineering, Santiago do Chile. Special Vol. of KNL, 517-549.
Jefferies, M.G.; Been, K. (2006). Soil liquefaction: A critical state approach. Taylor and Francis, Abingdon.
Klotz, E.U; Coop, M.R. (2001). An investigation of the effect of soil state on the capacity of driven piles in sands. Géotechnique, 51 (9): 733-751.
Kokusho, T. (2000). Correlation of pore-pressure B-value with P-wave velocity and Poisson’s ratio for imperfectly saturated sand or gravel. Soils and Foundations, 40 (4): 95-102.
Konrad, J.M. (1998). Sand state from cone penetrometer tests: a framework considering grain crushing stress. Géotechnique, 48 (2): 201-215.
Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice Hall, Inc., Upper Saddle. 653 pp. New Jersey, USA.
Lade P.V.; Yamamuro, J.A. (1997). Effects of nonplastic fines on static liquefaction of sands. Canadian Geotech. J., 34, 918-928.
Lade P.V.; Pradel, D. (1990). Instability and plastic flow of soils, I: Experimental observations. J. Eng. Mech., ASCE, 116 (11): 2532-2550.
Lade, P.V; Yamamuro, J.A. (1996). Undrained sand behaviour in axisymmetric tests at high pressures. J. Geotech. & Geoenviron. Engng. ASCE. 122 (2): 120-129.
Lade, P.V.; Yamamuro, J.A; Liggio, C.D. (2009). Effects of fines content on void ratio, compres sibility, and static liquefaction of silty sand. Geomechanics and Engineering, 1 (1): 1-15.
Lagioia, R.; Nova, R. (1995). An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression. Géotechnique, 45 (4): 633-648.
Leon, E.; Gassan, S.L; Talwsani, P. (2006). Accounting for soil aging when assessing liquefaction potential. J. Geotech. & Geoenviron. Engng. ASCE, 132 (3): 363-377.
Martins, F.; Bressani, L.A.; Coop, M.R.; Bica, V.D. (2002). Some aspects of the compressibility behaviour of a clayey sand. Canadian Geotech. J., 38 (6), 1177-1186.
McDowell, G.R; Bolton, M.D. (1998). On the micro mechanics of crushable aggregates. Géo technique, 48 (5): 667-679.
Mitchell, J.K. (1976). Fundamentals of Soil Behaviour. John Wiley & Sons, New York.
Moss, R.E.S.; Seed, R.B; Kayen, R.E. (2006a). CPT based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J. Geotech. & Geoenviron. Engng. ASCE, 132 (8): 1032-1051.
Moss, R.E.S.; Seed, R.B; Olsen, R.S. (2006b). Normalizing the CPT for overburden stress. J. Geotech. & Geoenviron. Engng. ASCE, 132 (3): 378-387.
Muir Wood, D. (2008). Critical states and soil modelling. In Deformational Characteristics of Geomaterials, Burns, Mayne & Santamarina (Eds.): IOS Press, 51-72.
Nicholson, D.; Chapman, T; Morrison, P. (2002). Pressuremeter proves its worth in London’s Docklands. Ground Engng., 35 (3): 32-34.
Nocilla, A.; Coop, M.R; Colleselli, F. (2006). The mechanics of an Italian silt; an example of ‘transitional’ behaviour. Géotechnique 56 (4): 261-271.
Nougier-Lehon, C.; Vincens, E.; Cambou, B (2005). Structural changes in granular materials: the case of irregular polygonal particles. Int. J. Solids & Structures 42 (24-25): 6356-6375.
Pestana, J.M.; Whittle, A.J. (1995). A compression model for cohesionless soils. Géotechnique, 45 (4): 611-631.
Qadimi, A; Coop, M.R. (2007). The undrained cyclic behaviour of a carbonate sand. Géotechnique, 57 (9), 739-750.
Robertson, P.K. (2009). CPT interpretation – a unified approach. Canadian Geotech. J., 46 (11): 1337-1355.
Robertson, P.K. (2010). Estimating in-situ state parameter and friction angle in sandy soils from CPT. Proc. of 2nd International Symposium on the CPT, TC102-16 ISSMGE, California, 2: 471-478.
Robertson, P.K; Wride, C.E. (1998). Evaluating cyclic liquefaction potential using the cone pene tration test. Canadian Geotech. J., 35(3): 442-459.
Schneider, J.A; Moss, R.E.S. (2011). Linking cyclic stress and cyclic strain based methods for assessment of cyclic liquefaction triggering in sands. Géotechnique Letters, published online doi: 10.1680/geolett.11.00021.
Seed, H. B.; Tokimatsu, K.; Harder L.F.Jr.; Chung, R. (1984). The influence of SPT procedures in soil liquefaction resistance evaluations. Earthquake Engineering Research Center, University of California, Berkeley, Report No. UCB/EER–84/15.
Sherif, M.A.; Ishibashi, I; Tsuchiya, C. (1977). Saturation effect on initial soil liquefaction, J. Geotech. Engng. Div., ASCE, 103: 914-917.
Shuttle, D.A.; Cunning, J. (2007). Liquefaction potential of silts from CPTu. Canadian Geotech. J., 44: 1-19.
Skempton, A. W. (1954). The pore-pressure coefficients A and B. Géotechnique, 4 (4): 143-147.
Sladen, J.A.; D’Hollander, R.D.; Krahn, J. (1985). Back analysis of the Nerlerk berm liquefaction slides. Canadian Geotech. J., 22: 579-588.
Tatsuoka, F.; Ochi, K.; Fujii, S.; Okamoto, M. (1986). Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soil and Foundations, 26 (3): 23-41.
Thevanayagam, S.; Mohan, S. (2000). Intergranular state variables and stress-strain behaviour of silty sands. Géotechnique, 50 (1): 1-23.
Thevanayagam, S.; Shemtham, T.; Mohan, S.; Liang, J. (2002). Undrained fragility of clean sands, silty sands and sandy silts. J. Geotech Geoenvir. Engrg., ASCE, 128 (10): 849-859.
Tokimatsu, K.; Yoshimi, Y. (1983). Empirical correlation of soil liquefation based on SPT N-value and fines content. Soils and Foundations, 23 (4): 56-74.
Vaid, Y.P.; Sivathayalan, S. (1996). Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Canadian Geotech. J., 33: 281-89.
Ventouras, K.; Coop, M.R. (2009). On the behaviour of Thanet sand: an example of an uncemented natural sand. Géotechnique, 59 (9): 727-738.
Verdugo, R.; Ishihara, K. (1996). The steady state of sandy soils. Soils and Foundations, 36 (2): 81-91.
Viana da Fonseca, A. (2012). Modelo Unificado em Ensaios Penetrométricos à luz de Estados Críticos. Da Prática à Teoria ou da Teoria à Prática. Conferência especial do V Geojovem, Simp. Brasileiro Jovens Geotécnicos, COBRAMSEG2012, 12º Cong. Bras. Mec. Solos e Eng. Geot., Porto de Galinhas, PE, Brasil; Vol. Único, pp. 50-69 & CD. ABMS, São Paulo.
Viana da Fonseca, A.; Carvalho, J.; Ferreira, C.; Santos, J. A.; Almeida F.; Pereira, E.; Feliciano, J.; Grade, J.; Oliveira, A. (2006). Characterization of a profile of residual soil from granite combining geological, geophysical and mechanical testing technique. Geotech. and Geological Engineering, 24 (5): 1307- 1348.
Viana da Fonseca, A.; Coop, M.T.; Fahey, M.; Consoli, N. (2011). The interpretation of conventional and non-conventional laboratory tests for challenging geotechnical problems. Keynote Lecture IS’Seoul, in ‘Deformation Characteristics of Geomaterials’, 1: 84-119. IOS Press, Amsterdam.
Vieira Faria, N.; Viana da Fonseca, A.; Ferrreira, C. (2006). Processo de saturación de ensayos triaxiales. Geotecnia, 104: 31-42, SPG, Lisboa.
Wood, F.M.; Yamamuro, J.A.; Lade, P.V. (1998). Effect of depositional method on the undrained response of silty sand. Canadian Geotech. J., 45 (11): 1525-1537.
Wroth, C.P.; Bassett, R.H. (1965). A stress-strain relationship for the shearing behaviour of a sand. Géotechnique, 15 (1): 32-56.
Yamamuro, J.A.; Covert, K.M. (2001). Monotonic and cyclic liquefaction of very loose sands with high silt content. J. Geotech. & Geoenviron. Engng. ASCE, 127 (4): 314-324.
Yamamuro, J.A.; Lade, P.V. (1998). Steady-state concepts and static liquefaction of silty sands. J. Geotech. & Geoenviron. Engng. ASCE, 121 (9): 868-877.
Yamamuro, J.A.; Wood, F.M.; Lade, P.V. (1998). Effect of depositional method on the microstructure of silty sand. Canadian Geotech. J., 45 (11): 1538-1555.
Yang, J. (2002). Non-uniqueness of flow liquefaction line for loose sand. Géotechnique, 52 (10): 757-760.
Yang, J.; Sato, T. (1998). On the velocity and damping of elastic waves in nearly saturated soils. Proc. 33rd Japan Nat. Conf. Geotech. Engng., 1157-1158.
Yang, J.; Sato, T. (2001). Analytical study of saturation effects on seismic vertical amplification of a soil layer. Géotechnique, 51 (2): 161-165.
Yang, J.; Sze, H.Y. (2011). Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique, 61 (1): 59-73.
Yoshimi, Y.; Tanaka, K; Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils & Foundations, 29: 157-162.
Yoshimi, Y.; Tokimatsu, K.; Ohara, J. (1994). In situ liquefaction resistance of clean sands over a wide density range. Géotechnique, 44 (3): 479-494.
Yoshimine, M.; Ishihara, K.; Vargas, W. (1998). Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils and Foundations, 38 (3): 179-188.
Youd, T.L.; Idriss, I.M.; Andrus, R.D. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. & Geoenviron. Engng. ASCE, 127 (10): 817-833.
Yu, H.S.; Schnaid, F.; Collins, I.F. (1996). Analysis of cone pressuremeter tests in sands. J. Geotech. & Geoenviron. Engng. ASCE, 122 (8): 623-632.