Desenvolvimento, efeitos e mitigação de liquefacção induzida por sismos: um estudo exaustivo baseado em modelação física dinâmica na centrifugadora

Autores/as

  • Paulo Coelho Universidade de Coimbra
  • Stuart Haigh Cambridge University Engineering Department
  • S. P. Gopal Madabhushi Cambridge University Engineering Department

DOI:

https://doi.org/10.14195/2184-8394_107_2

Palabras clave:

Liquefacção induzida por sismos, areia saturada, modelação física na centrifugadora

Resumen

A liquefacção de areias saturadas é uma ameaça séria para estruturas construídas sobre fundações superficiais em regiões sismicamente activas. A implementação do dimensionamento baseado no desempenho nestes casos é condicionada pelo fraco conhecimento sobre os mecanismos relacionados com o desenvolvi mento, magnitude dos efeitos e mitigação da liquefacção induzida por sismos, os quais foram estudados atra vés de um projecto de investigação conjugando técnicas experimentais e numéricas. Este artigo foca a com ponente experimental do trabalho baseada em modelação física na centrifugadora, descrevendo a forma como a técnica é aplicada no estudo de problemas de liquefacção e apresentando algumas das observações e conclu sões preliminares obtidas. Tanto as características mais importantes do comportamento do sistema solo-estru tura quando o solo sofre liquefacção, como as que determinam o desempenho da densificação enquanto me dida de mitigação dos efeitos da liquefacção são consideradas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Brennan, A. J., Madabhushi, S. P. G. (2002). Design and Performance of a New Deep Model Con - tai ner for Dynamic Centrifuge Modelling. Proc. Int. Conf. on Physical Modelling in Geote - chnics, Newfoundland, Balkema, Rotterdam, pp. 183-188.

Chan, A. H. C. (1988). A unified finite element solution to static and dynamic problems of Geomechanics. PhD Thesis, University of Wales, Swansea.

Coelho, P. A. L. F, Haigh, S. K., Madabhushi, S. P. G. (2003). Boundary effects in dynamic cen tri - fu ge modelling of liquefaction in sand deposits, Proc. 16th ASCE Engineering Mechanics Conf., Seattle, US.

Coelho, P. A. L. F, Haigh, S. K., Madabhushi, S. P. G. (2004a). Centrifuge modelling of liquefaction of saturated sand under cyclic loading. Proc. Intern. Conf. on Cyclic Behaviour of Soils and Liquefaction Phenomena, Bochum, Germany, pp. 349-354.

Coelho, P. A. L. F, Haigh, S. K., Madabhushi, S. P. G. (2004b). Centrifuge modelling of the effects of earthquake-induced liquefaction on bridge foundations. Proc. 11th Int. Conf. on Soil Dynamics and Earthquake Eng. & 3rd Int. Conf. on Earthquake Geotechnical Engineering, Berkeley, US, 2004, Vol.2, pp. 404-411.

Coelho, P. A. L. F, Haigh, S. K., Madabhushi, S. P. G., O’Brien T. (2004c). Centrifuge modelling of the use of densification as a liquefaction resistance measure for bridge foundations. Proc. 13th World Conf. on Earthquake Engineering, Vancouver, Canada.

Dewoolkar, M. M., Ko, H.-Y., Stadler, A. T., Astaneh, S. M. F. (1999). A Substitute Pore Fluid for Seismic Centrifuge Modelling, Geotechnical Testing Journal, Vol. 22, No. 3.

Ghosh, B., Madabhushi, S. P. G. (2003). A numerical investigation into the effects of single and multiple frequency earthquake motions. Soil Dynamics and Earthquake Engineering, 23, pp. 691- 704.

Gudehus G. (2004). Seismic decay of psammoids and peloids with and without hypoplasticity. Proc. Intern. Conf. on Cyclic Behaviour of Soils and Liquefaction Phenomena, Bochum, Germany, pp. 11-20.

Haigh, S. K., Coelho, P. A. L. F., Madabhushi, S. P. G. (2005). On the prediction of dynamic behaviour using numerical and physical modelling. Proc. XVIth Intern. Conf. on Soil Mechanics and Geotechnical Engineering, Osaka, Japan.

Hamada, M., Yasuda, S., Wakamatsu, K. (1992). Large ground deformations and their effects on lifelines: 1948 Fukui earthquake. Technical Report NCEER-92-0001. M. Hamada and T. D. O'Rourke (eds); pp. 2.1-2.35.

Ishihara, K. (1993). Liquefaction and Flow Failure During Earthquakes, 33rd Rankine Lecture, Geotechnique, Vol. 43, No.3, 351-415.

Ishihara, K. (1994). Review of the predictions for Model 1 in the VELACS program. Proc. Intern. Conf. on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Arulanandan & Scott (Eds), Balkema, Rotterdam.

Ishihara, K. (1996). Soil Behaviour in Earthquake Geotechnics, Oxford, UK.

Ishihara, K., Nagase, H. (1988). Multi-directional irregular loading tests on sand. Soils Dynamics and Earthquake Engineering, Vol. 7, No. 4, pp. 201-212.

Madabhushi, S. P. G., Schofield, A. N., Lesley, S. (1998). A new Stored Angular Momentum (SAM) based Earthquake Actuator, Centrifuge’98. Proc. Intern. Conf. on Centrifuge Modelling, Tokyo, Japan, Vol.1, pp. 111-116.

Manzari, M. T., Arulanandan, K., Scott, R. F. (1994). VELACS Project: a summary of achievements, Proc. 5th US-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures Against Soil Liquefaction, Technical Report NCEER-94-0026, Buffalo, US.

Manzari, M. T, Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Geotechnique; 47(2), pp. 255-272.

Mitchell, J. K., Cooke, H. G., Schaeffer, J. (1998). Design considerations in ground improvement for seismic risk mitigation, Proc. of Specialty Conference on Geotechnical Earthquake Engineering and Soil Dynamics III, Seattle, Washington, ASCE Geotechnical Publication No. 75, Vol. 1.

Pastor, M., Zienkiewicz, O. C. (1986). A Generalised Plasticity, Hierarchical Model for Sand under Monotonic and Cycle Loading. Proc. Int. Conf. Numog-II, Ghent, G. N. Pande & W.F. Van Impe (eds.), April, 1986, pp. 131-150.

Pastor, M., Zienkiewicz, O. C., Chan, A. H. C. (1990). Generalized Plasticity and the Modelling of Soil Behaviour. Int J. Numer. Anal. Methods Geomech.14, pp.151-190.

Pastor, M., Zienkiewicz, O. C., Leung, K. H. (1985). Simple model for transient soil loading in earthquake analysis. II. Non-associative models for sands, Int. J. Numer. Anal. Methods Geomech., 9, pp.477-498.

Prachathananukit, R., Manzari, M.T. (2000). Significance of pore water flow in soil liquefaction analysis. Proc. EM2000- Proc. 14th Engineering Mechanics Conf. ASCE, May 2000, Austin Texas, US.

Randolph, M. F., House, A. R. (2001). The complementary roles of physical and computational modelling, International Journal of Physical Modelling and Geotechnics, Vol. 1, No. 1.

Schofield, A. N. (1998). Geotechnical centrifuge development can correct soil mechanics errors, Centrifuge’98, Proc. Int. Conf. on Centrifuge Modelling, Tokyo, Japan.

Schofield, A. N. (1981). Dynamic and Earthquake Geotechnical Centrifuge Modelling. Proc. Intern. Conf. on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol. 3.

Steedman, R. S., Zeng, X. (1995). Geotechnical centrifuge technology, Section 7- Dynamics. Edited by R.N. Taylor, Blackie Academic & Professional, London.

Taboada V. M., Dobry R. (1994). Experimental results of Model No 1 at RPI. Arulanandan & Scott (eds) Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Balkema, Rotterdam, pp. 3-17.

Yong, C., Tsoi, K., Feibi, C., Zhenhuan, G., Qijia, Z., Zhangli, C., Eds. (1988). The Great Tangshan earthquake of 1976: an anatomy of disaster. State Seismological Bureau of P.R. China, Pergamon Press, UK, 153p.

Yoshimine, M., Ishihara, K. (1998). Flow potential of sand during liquefaction. Soils and Foundations, Vol. 38, No. 3, pp. 189- 198.

Zeng, X., Schofield, A. N. (1996). Design and Performance of an Equivalent-Shear-Beam (ESB) Container for Earthquake Centrifuge Modelling. Geotechnique, Vol. 46, No.1.

Zienkiewicz, O. C., Leung, K. H., Pastor, M. (1985). Simple Model for Transient Soil Loading in Earthquake Analysis. I. Basic Model and Its Application. Int. J. Numer. Anal. Methods Geomech., Vol. 9, pp. 453-476.

Publicado

2006-07-21

Número

Sección

Artículos