The Mixed Mathematical Intermediates
DOI:
https://doi.org/10.14195/2183-4105_18_7Abstract
In Metaphysics B.2 and M.2, Aristotle gives a series of arguments against Platonic mathematical objects. On the view he targets, mathematicals are substances somehow intermediate between Platonic forms and sensible substances. I consider two closely related passages in B2 and M.2 in which he argues that Platonists will need intermediates not only for geometry and arithmetic, but also for the so-called mixed mathematical sciences (mechanics, harmonics, optics, and astronomy), and ultimately for all sciences of sensibles. While this has been dismissed as mere polemics, I show that the argument is given in earnest, as Aristotle is committed to its key premises. Further, the argument reveals that Annas’ uniqueness problem (1975, 151) is not the only reason a Platonic ontology needs intermediates (according to Aristotle). Finally, since Aristotle’s objection to intermediates for the mixed mathematical sciences is one he takes seriously, so that it is unlikely that his own account of mathematical objects would fall prey to it, the argument casts doubt on a common interpretation of his philosophy of mathematics.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows sharing the work with recognition of authorship and initial publication in this journal.