Comparing methodologies for mapping the afforestation of public streets in Chapada Neighbourhood, using pléiades images

Authors

DOI:

https://doi.org/10.14195/1647-7723_32-1_2

Keywords:

Unsupervised classification,, NDVI,, supervised classification,, urban forest.

Abstract

Knowing about the arboreal heritage present along the city’s roads is a challenge. Acquiring this information requires personal experience, time, and investing financial resources in the field. It is not always possible to carry out counts in situ, so different techniques are implemented. Pixel-oriented methodologies (supervised, unsupervised classification) are used, along with NDVI segmented classification to gain prior knowledge of the roadside tree heritage, and to map and quantify them. The Chapada neighbourhood in the city of Ponta Grossa-PR (Brasil) has been previously mapped using the visual analysis methodology. The count of 3101 trees on 228 roads was used as a reference to compare with the three aforementioned methodologies. A soil classification was carried out using the three methodologies to find out about the presence of roadside vegetation. In the case of NDVI, it was possible to show 56.00 % similarity with the trees obtained in the visual analysis; the unsupervised classification obtained a map of 91.19 %, this being the largest number of trees counted, and the supervised classification figure was 82.68 %.

Downloads

Download data is not yet available.

References

Agyemang, T., Heblinski, J., Schmieder, K., Sajadyan, H., Vardanyan, L. (2011). Accuracy Assessment of Supervised Classification of Submersed Macrophytes Using GIS and Error Matrices: The Case of Lake Sevan, Armenia. Hidrobiology, n. 661, 85-96.

Almeida, D. (2009). Análise da arborização urbana de cinco cidades da região norte do estado de Mato Grosso (Dissertação de Mestrado Em Ciências Florestais e Ambientais). Faculdade De Engenharia Florestal, Universidade Federal de Mato Grosso, Cuiabá, 62f. Disponível em https://www.ufmt.br/fenf/arquivos/0a241f85423324b3077c8ee2dc7b6748.pdf. Acceso em 8 jul. 2018.

Ardila, J., Bijker, W., Topelkin, V., & Stein, A. (2011). Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images, International Journal of Applied Earth Observation and Geoinformation, Netherland, V. 15, jun, 57-69.

Ardila, J. P. (2012). Object-based methods for mapping and monitoring of urban trees with multitemporal image analysis (Tese de Doutorado em Geoformação). Faculty of Geo-Information Science and Earth Observation, University Of Twente, Netherlands, 176 f.

Audebert, N., Bertrand, S., Lefévre, S. (2018). Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, v. 140, p. 20-32

Batista dos Santos, C. e Carvalho, F. G. (2012). Análise da arborização viária do bairro de Petrópolis, natal, rn: uma abordagem para diagnóstico e planejamento da flora urbana. REVSBAU, Piracicaba – SP, v.7, n.4, 90‐106.

Biondi, D. (2008). Arborização Urbana Aplicada à educação Ambiental nas escolas. Curitiba: [s.n.]. 120 p.

Burgos, M., Manterola, C. (2010). Cómo interpretar un artículo sobre pruebas diagnósticas. Revista Chilena de Cirugía, n. 3, v. 62, 301-308.

Campbell, J., Wynne, R. (2022). Introduction to remote sensing. 2 ed. London: Taylor and Francis, 667 p.

Centeno, J. (2009). Sensoriamento Remoto e Processamento de Imagens Digitais. Curitiba: Universidade Federal de Paraná (UFPR).

Congalton, R. (2004). Putting the Map Back in Map Accuracy Assessment. In: Lunetta, R., Lyon, J. Geoespatial Data Accuracy Assessment. Environmental Agency: United States, 1-13.

Chuvieco, E. (2000). Fundamentos de Teledetección Espacial. 2 ed. Rialp, Madrid, 449 p.

Foody, G. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image. Remote Sensing of Environment, Nottingham, UK.

Hao, S., Cui, Y., Wang, J. (2021). Segmentation Scale Effect Analysis in the Object-Oriented Method of High-Spatial-Resolution Image Classification. Sensors, China, v.21.2-17.

Hong, Z., Xu, S., Wang, J., Xiao, P. (2009). Extraction of Urban Street Trees from High Resolution Remote Sensing Image. Urban Remote Sensing Joint Event, Shanghai, China.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA A ESTATISTICA. Disponivel em: https://cidades.ibge.gov.br/brasil/pr/ponta-grossa/panorama. Acesso em: 12 out. 2018.

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA A ESTATISTICA (2006). Manual Técnico de Uso da Terra. 2. ed. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística.

Leckie, D., Burnett, C., Nelson, T., Jay, C., Walsworth, N., Gougeon, F., Cloney, E. (1999). Forest Parameter Extraction through Computer-Based Analysis of High Resolution Imagery. In: 21st Canadian Symposium on Remote Sensing, 21, Ottawa, 1-9.

LI, F., Song, G., Liujun, Z., Yanan, Z., Di, L. (2017). Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban Forestry & Urban Greening, Nanjing, China

Malik, P., Chourasiya, A., Pandit, R., Bharaskar, K. (2023). Satellite Image Segmentation Using Neural Networks: A Comprehensive Review. International Journal of Enhanced Research in Educational Development (IJERED).

Moreira, M. (2007). Fundamento do Sensoriamento Remoto e Metodologias de Aplicação. Viçosa: UFV.

PCI GEOMATICS. (2018). Geosoluciones: Geomatica OrthoEngine Ortorectificando datos Pleiades 1ª, 1-12.

Pouliot, D., King, D., Bell, F., Pitt, D. (2002). Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration, Remote Sensing of Environment, Ontario, v. 82, mar, 322-334.

Recio, J. A. (2009). Técnicas De Extracción De Características Y Clasificación De Imágenes Orientada A Objetos Aplicadas A La Actualización De Bases De Datos De Ocupación Del Suelo (Tesis Doctoral en Ingeniería Cartográfica, Geodesia Y Fotogrametría). Universidad de Valencia, Valencia, 310 f.

Richards, J. (2013). Supervised Classification Techniques in: Remote Sensing Digital Image Analysis. 5 th. Ed. Australia: Springer, 173-184.

Santos, T., Lisboa, C., Carvalho, F. (2012). Análise da arborização viária do bairro de Petrópolis, Natal, RN: uma abordagem para diagnóstico e planejamento da flora urbana. Revista da Sociedade Brasileira de Arborização Urbana, Piracicaba, v.7, n.4, 90-106.

Tadenuma, S. (2019). Espacialização Da Arborização De Vias Públicas Por Densidade E Níveis De Atenção Na Na Área Urbana De Ponta Grossa (Pr) (Dissertação de Mestrado em Gestão do Território). Sector De Ciências Exatas E Naturais, Universidade Estadual De Ponta Grossa, Ponta Grossa.

Wu, B., Yu, B., Yue, W., Shu, S., Tan, W., Hu, C., ... & Liu, H. (2013). A voxel-based method for automated identification and morphological parameters estimation of individual street trees from mobile laser scanning data. Remote Sensing, 5(2), 584-611.

Xu, Z., Zhou, Y., Wang, S., Li, F., Wang, S., Wang, Z. (2022). A Novel Intelligent Classification Method for Urban Green Space Based on High-Resolution Remote Sensing Images. Remote Sensing, 2-18.

Published

2025-02-13