Dynamic characterization of soils. Application to the study of tailings
DOI:
https://doi.org/10.14195/2184-8394_164_6Keywords:
soil dynamics, wave velocity, tailingsAbstract
In the field of civil engineering, the study of the dynamic properties of soils is essential to understand how their characteristics may be affected under cyclic or dynamic loads at various deformation levels. This paper introduces soil dynamics, highlighting the most studied properties and the different techniques used for their analysis. As a practical application, it includes part of the dynamic study conducted on tailings using the PS logging field test and laboratory techniques such as cyclic direct simple shear, resonant column and Bender elements. This approach enabled a comprehensive analysis of the material across a wide range of deformations. The results were consistent across techniques, producing a complete degradation curve and validating an integrated approach to dynamically evaluate tailings and their temporal evolution.
Downloads
References
ASTM D 4015-92 (1992, reapproved 2000). Standard Test Methods for Modulus and Damping of Soils by the Resonant-Column Method. Annual Book of ASTM Standards, Volume 04.08.
ASTM D 8295-19 (2019). Standard Test Method for Determination of Shear Wave Velocity and Initial Shear Modulus in Soil Specimens using Bender Elements. Annual Book of ASTM Standards, Volume 04.09.
ASTM D 8296-19 (2019). Standard Test Method for Consolidated Undrained Cyclic Direct Simple Shear Test under Constant Volume with Load Control or Displacement Control. Annual Book of ASTM Standards, Volume 04.09.
Braja, M. Das; Zhe, L. (2016). Principles of Soil Dynamics. 3rd edition, Cengage Learning International Edition, USA.
Galindo – Aires, R. A. (2013). Degradación de suelos ante tensión de corte cíclica. Lámpsakos, No. 10, pp. 43-51, Fundación Universitaria Luis Amigó, Medellín, Colombia. https://doi.org/10.21501/21454086.933
Gordillo, N. O. (2011). Aplicaciones de la Dinámica de Suelos. Tesis Doctoral, Instituto Politécnico Nacional de México, México D.F.
Hardin, B. O.; Drnevich, V. P. (1972). Shear Modulus and Damping in Soils: Measurement and Parameter Effects. Journal of Soil Mechanics and Foundation Engineering Div., ASCE, Vol. 98 No. SM6, June, pp 603-624. https://doi.org/10.1061/JSFEAQ.0001756
Ishihara, K. (1996). Soil Behaviour in Earthquake Geotechnics. Oxford University Press Inc, New York.
Kakar, O. (2014). Building a Framework for Predicting the Settlements of Shallow Foundations on Granular Soils Using Dynamically Measured Soil Properties. M S Thesis, University of Texas at Austin, Austin.
Kitsunezaki, C. (1980). A new method of shear wave logging. Geophysics. Geophysics, 45, pp. 1489-1506. https://doi.org/10.1190/1.1441044
Kramer, S. L. (1996). Geotechnical Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Muñoz, A. J. (2017). Manual de Laboratorio para determinar parámetros dinámicos en suelos, con el uso de los equipos: triaxial cíclico, columna resonante y elementos piezoeléctricos Bender. Tesis Doctoral, Pontificia Universidad Católica del Ecuador, Quito.
Saran, S. (2021). Dynamics of Soils and Their Engineering Applications. CRC Press, Boca Ratón, Florida.
Telford, W. M.; Geldart, L. P.; Sheriff, R. E. (1990). Applied geophysics. Cambridge University Press, Cambridge.
Vucetic, M.; Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response. ASCE, Journal of Geotechnical Engineering, 117 (1), pp. 89-107. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
Wang, B. E. (2015). Dynamic Properties of Fine Liquefiable Sand and Calcareous Sand from Resonant Column Testing. M. S. Thesis, University of Texas at Austin, Austin.